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Abstract. The quality of consumable water is decreasing due to increasing water pollution 

caused by the production and use of human-made chemicals. A significant part of these 

chemicals are pesticides from the class of triazines since they are widely used in agriculture 

as herbicides. Water treatment techniques mainly rely on separation science, where the 

membrane technology has been identified as the most useful. Membrane processes used in 

water treatment are microfiltration, ultrafiltration, nanofiltration and reverse osmosis. In 

general, the pollutant retention/rejection by membranes depends on the physicochemical 

properties of the membrane i.e. membrane material, porosity, pore size and on the 

properties of the pollutant molecule i.e. size, length, width, molecular weight, hydrophobicity 

or dipole moment. The pollutant retention also depends on the feed-water composition 

(organic matter and salt presence, solute concentration, water pH). Thus, effective water 

treatment depends on the selection of an appropriate type of membrane for a particular type 

of pollutants. Membrane technology is also significant because it is used in polluted water 

analysis, more precise as a part of a liquid-phase or solid-phase microextraction. Among 

several developed membrane-based microextraction methods, in triazine polluted water 

analysis common are membrane-protected solid-phase microextraction and hollow-fiber 

liquid-phase microextraction. In this field, researchers tend to achieve membrane-pollutant 

compatibility through the synthesis of polymeric materials with molecular recognition 

properties i.e. through a technology called molecular imprinting. 

Key words: membrane technology, triazines, water treatment, water pollution 

                                                           
Received February 14th, 2017; accepted September 22th, 2017 
Corresponding author: Milica D. Branković 

Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia 

E-mail: milica.chem@outlook.com 



230 Branković et al. 

1. INTRODUCTION 

Despite the fact that water is the most common substance on the planet, only 3 % of 

water resources is fresh water and only 1 % of it is available for human use. The quality 

of consumable water is decreasing due to increasing water pollution, mainly caused by 

human activities. Water treatment techniques used to improve water quality and taste by 

removing pathogens and undesirable compounds mainly rely on separation science, 

where the use of membrane technology has been identified as the most robust and 

flexible one. 

Advantages of membrane technology over the conventional ones are that membrane 

treatment takes place at ambient temperature without phase changing, the separation 

occurs without substance accumulation inside the membrane and membrane processes are 

technically simpler and more energy efficient than conventional separation processes 

(Karabelas and Plakas, 2011). The disadvantages would be potential membrane fouling 

and damaging, which why membrane treatment requires costly feed-water pretreatment 

(Karabelas and Plakas, 2011). The main fouling categories are organic, inorganic, 

particulate and biological fouling. Harmful substances can damage membrane (acids, 

bases, (pH), free chlorine, bacteria, free oxygen), block membrane by fouling (metal 

oxides, (Fe
2+

, Mn
2+

), colloids (organic, inorganic) biological substances (bacteria, 

microorganisms) or by scaling (calcium sulfate, calcium carbonate, calcium fluoride, 

barium sulfate, silica) (Rautenbach and Albrecht, 1989). 

1.1. General Principals of Membrane Technology 

The membrane separation process is based on the physicochemical nature of the 

membrane material which acts as a semipermeable barrier between two homogeneous 

phases i.e. membrane separation is characterized by simultaneous retention of species and 

product flow through the membrane (Singh, 2015). The driving force of membrane 

separation is the difference in concentration, electrical potential or pressure between the 

feed and product side. The key factors of a membrane performance are the membrane 

selectivity and productivity, which have a trade-off relationship (Singh, 2015; Yoshikawa 

et al., 2016). Selectivity can be expressed as the ratio between permeability coefficients 

of two substances i.e. a parameter called retention or separation factor, while productivity 

is expressed as a parameter called flux (Singh, 2015; Yoshikawa et al., 2016). For the 

pressure-driven separation processes flux can be expressed with Eq. (1) (Singh, 2015) 

where, as can be seen, depends on transmembrane pressure (ΔP) and the membrane 

thickness (t).  

 J = k x ΔP/t (1) 

The membrane transport phenomena can be explained in different ways depending on 

the membrane pore size. Molecules of solutes are first incorporated into the membrane’s 

pores and subsequently transported through the membrane by diffusion (Yoshikawa et 

al., 2016). The step of solute incorporation into the pores is affected by the pore size and 

may occur due to solubility or partition. Therefore, the transport phenomena through a 

dense membrane (characterized by a molecular weight cut-off less than 100 Da) can be 

understood by means of solution-diffusion whereas through a porous membrane by the 

partition-diffusion mechanism (Yoshikawa et al., 2016). 
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1.2. Membrane Processes in Water Treatment 

Membrane processes used in water treatment (figure 1) are usually defined according to 

the membrane pore size. The separation mechanisms vary depending on the physicochemical 

properties of the solute and the membrane and can be explained either with physical (size 

exclusion or steric hindrance) or chemical selectivity (hydrophobic/hydrophilic interactions), 

where for the polar organic compounds separation is not so simple due to potential polar 

interactions between organic species and membrane surface (Karabelas and Plakas, 2011). 

1.3. Pesticide Water Pollution 

The significant part of an increasingly complex mixture of human-made organic 
chemicals that pollute water bodies are the pesticides. They can cause a list of health 
effects, including cancer, birth defects, and disruption of the endocrine system. About 50% 
of pesticides applied in agriculture are related to herbicides (Abate and Masini, 2005) and 
among them, triazine compounds are the most common. They are easily introduced in the 
water flows since a larger amount of herbicides applied is dispersed in the air, 
contaminating the surface waters or on the soil, contaminating groundwater, than it is in 
contact with plants. Once introduced into the environment, pesticides can cause long-term 
negative effects due to their persistence. For example, some European countries have 
stopped using atrazine before 2004 but still detect its concentrations above 0.1 µg/l in 
aquifers (La Cecilia and Maggi, 2017). Another issue is the easy distribution of pesticides 
into another parts of the environment, especially from soil into groundwater which are the 
main sources of drinking water. It was found that the frequency of herbicide detection in 
groundwater is directly related to the soil half-life of the herbicide (Ritter et al., 1994). 

Since membrane technology is one of the most robust and beneficial among the 

purification technologies, the aim of this paper was to present the aspects of its application 

in treatment and analysis of the most frequent water pollutants, triazine herbicides. 

 

Fig. 1 Overview of the main features of membrane technology 
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2. MEMBRANE TECHNOLOGY IN TREATMENT OF TRIAZINE POLLUTED WATER 

Several factors, like membrane (porosity, pore size, MWCO) or pesticide properties 

(molecule size, length, width, hydrophobicity, dipole moment) affect membrane 

treatment of water polluted with pesticides. On the membrane pore size, for example, 

depends hydropermeability, where the bigger pore size is the higher is permeability, as 

shown for three different nanofiltration membranes (Palma et al., 2016). In order to 

efficiently purify water from pesticides, one of the most important items is to match the 

membrane pore size and pesticide size.  

2.1. Influence of Pesticide Properties 

Pesticides usually have molecular weights above 200 Da and the size in the range of 1 

nm, thus convenient membrane techniques for their removal would be nanofiltration (NF) 

or ultra-low-pressure reverse osmosis (ULPRO) (Karabelas and Plakas, 2011). NF 

membranes, like NF99HF, show rejection of large triazines (atrazine, bentazon) above 90 

%, but these are not efficient in removal of small triazine transformation products like 

2,6-dichlorobenzamid (BAM) or desethyldeisopropyl atrazine (DEIA) whose sufficient 

removal is achieved with low-pressure membranes i.e. with XLE (Extra-Low Energy) 

membrane (Madsen and Søgaard, 2014). These authors (Madsen and Søgaard, 2014) 

described the triazine retention with the steric model, suggesting that the main effect of 

the triazine transformation is changing (decreasing) their steric hindrance, which explains 

the worse retention of pesticides by membranes with the bigger pores (in this case with 

NF99HF). The higher retention of heavier and bigger triazine molecules is confirmed by 

other authors, where among atrazine (MW=215.7), propazine (MW=229.7) and 

prometryn (MW=241.4), prometryn displayed the highest rejection (Rakhshan and 

Pakizeh, 2015, 2016), but the molecule size is not the single factor affecting retention. 

The retention also increases as molecule length and width increases, with the greater 

influence of the length (Musbah et al., 2013). As mentioned before, separation of polar 

organics is complex due to interactions with the membrane surface. For example, 

desethylatrazine (DEA) retention is better than simazine retention-at 10 bars DEA 

retention is about 62 %, while for simazine is about 50%, although DEA has lower MW 

than simazine (Musbah et al., 2013). This is probably due to greater simazine-membrane 

affinity. Furthermore, triazines rejection by NF270 membrane, with MWCO of 340 Da is 

lower than by NF-90 membrane, with MWCO of 180 Da, as expected, but NF270 

showed higher selectivity and rejected each triazine in a different way, with differences 

between atrazine and others within 30-40 % (Sotto et al., 2010). In general, when the 

molecule is larger than the membrane pore size its retention is affected by sieve 

mechanism, but when it is in the range of a membrane pore size, the membrane-surface 

interactions have a greater role in rejection (Chen et al., 2004). 

When it comes to pesticide hydrophobicity, researches have shown that triazine 

retention cannot be correlated only with this factor, but also with molecule’s dipole 

moment (Rakhshan and Pakizeh, 2015, 2016). The triazine rejection decreases as dipole 

moment increases, which was shown by experiments conducted with propazine, atrazine, 

and prometryn (Rakhshan and Pakizeh, 2015, 2016). The possible explanation is that the 

molecule’s dipole tends to orient parallel to the pore length, thereby the molecule easier 

enters the pore and permeates through the membrane (Van der Bruggen et al., 1999). 
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2.2. The Role of Feed-water Composition 

The role of the feed-water composition in membrane treatment efficiency includes the 

role of pH and ionic strength of the solution, solute concentration and the presence of 

organic matter. pH affects pesticide retention due to membrane surface functional groups 

dissociation (Karabelas and Plakas, 2011), where the higher ionic content leads to an 

increase in triazine rejection due to ion adsorption on the membrane, which narrows the 

membrane pore size, as indicated by an increase in membrane zeta potential (Madsen and 

Søgaard, 2014). The triazine rejection increases as the feed concentration increases 

(Musbah et al., 2013; Rakhshan and Pakizeh, 2015, 2016), probably due to pesticide 

adsorption onto the membrane surface (Rakhshan and Pakizeh, 2015). Research on the 

presence of organic matter in water and its influence on triazine rejection by NF90, 

NF270 and XLE membrane, conducted by Plakas and Karabelas (2009, 2011) revealed 

several important facts. First, organic matter deposition on the membrane causes changes 

in membrane surface characteristics which affects flux and triazine rejection. Membrane 

fouling and triazine rejection depend on the type and concentration of humic material and 

the presence of calcium ions i.e. the rejection is improved in the presence of ions and with 

increasing humic material concentration. The concluding is that triazine rejection, with the 

presence of humic substances, is improved due to complexation between pesticide and 

much larger organic matter that leads to a solute with higher MW, which is better retained. 

Figure 2. represents a brief review on triazine rejection by several membranes (commonly 

used commercial membranes (XLE, NF90, NF270) and two laboratory prepared LabPrep1 

(Oleic acid-modified SiO2/cellulose acetate nanocomposite membrane, fabricated via the 

phase inversion method (Rakhshan and Pakizeh, 2016)) and Lab-Prep2 (Thin film 

nanocomposite (TFN) membrane containing oleic acid modified silica nanoparticles, 

synthesized via interfacial polymerization on polysulfone asymmetric membrane 

(Rakhshan and Pakizeh, 2015))). 

 

Fig. 2 A review on rejection percentage of several triazines 
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3. APPLICATION OF MEMBRANE TECHNOLOGY IN ANALYSIS OF TRIAZINES IN WATER 

Considering the sample preparation as a multistep process, its main problem is the 

risk of analyte loss and sample contamination, so an ideal preparation technique should 

be single-step, with minimal use of solvent and energy. Such technique nearly matches 

with the combination of membrane-based separation, which can be performed 

continuously, under mild conditions and microextraction, which can reduce the number 

of errors and it is eco-friendlier. Therefore, the main purpose of membrane technology in 

triazine analysis is in the sample preparation step, as an alternative to conventional 

extraction techniques. In order to increase the membrane selectivity and enhance the 

separation performance, it is necessary to introduce specific binding sites i.e. to give the 

membrane a recognition ability for a specific molecule. This is achieved through 

molecular imprinting technology, which is usually related to polymers. Molecularly 

imprinted polymer (MIP) is a type of material in which recognition sites for a specific 

molecule are created through physicochemical interactions between functional groups of 

polymer and template molecule, then are further stabilized through structure stabilization 

and at the end are activated by the target molecule extraction (Yoshikawa et al., 2016). In 

brief, the functional monomer forms a complex with the template molecule, which is 

followed by further polymerization of monomer and cross-linker, leading to a highly 

cross-linked polymeric network that keeps the template in a position (Gkementzoglou et 

al., 2013). Template removal at the end, reveals recognition sites. Several preparation 

methods of MIPs used in triazine analysis are given in Table 1. 

As functional monomers frequently used are acrylic (AA) and methacrylic acid 

(MAA), which are hydrogen-bonding and proton-accepting compounds (Yoshikawa et 

al., 2016) convenient for interaction with polar compounds, like triazines. Although, non-

covalent imprinting, based on weak non-covalent forces between template and monomer  

is more common as an imprinting technique (Yoshikawa et al., 2016), the resulting 

MIPs often have poor recognition ability in water due to the presence of polar solvent 

which easily disturbs hydrogen bonds formed via non-covalent imprinting (Chen et al., 

2011). Researchers tend to develop a water compatible MIPs, by using 2-hydroxyethyl 

methacrylate (HEMA) as functional monomer (Benito-Peña et al., 2009) or by enhancing 

MIPs surface’s hydrophilicity through hydrophilic functional groups bonding or 

hydrophilic polymer grafting process (Yang et al., 2009; Ma et al., 2012; Xu et al., 2014). 

Xu et al. prepared MIP with hydrophilic core and shell, so-called double water 

compatible MIP (DWC-MIP), using HEMA as co-monomer and grafting poly (2-

hydroxyethyl methacrylate) (PHEMA) to MIP particles by reversible addition 

fragmentation chain transfer precipitate polymerization. DWC-MIP had the highest 

triazine binding capacity and fastest binding kinetics, among other MIPs, because 

polymer particles due to good water compatibility can uniformly disperse in water, 

providing better contact between pesticide and MIP. 
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Table 1. MIP preparation methods 

Used as Template Monomer Cross-

linker 

Initiator Porogen Template 

removal 

Reference 

HF-LPME propazine MAA EGDMA AIMN toluene methanol: acetic 

acid=1:1 

Barahona et 

al., 2016 

protected 

HF-LSME 

atrazine MAA EDMA AIBN toluene + 

dodecanol 

methanol Chen et al., 

2014 

protected 

HF-LPME 

propazine MAA DVB-80 AIBN toluene: 

acetonitrile=25

:75 

methanol: acetic 

acid=1:1 

Turiel et al., 

2016 

SPE atrazine MAA-

HEMA 

EGDMA AIBN acetonitrile methanol: acetic 

acid=9:1 

Xu et al., 

2014 

Abbreviations: HF-LSME (hollow fiber liquid-solid microextraction), EDMA (ethylene dimethacrylate), 

EGDMA (ethylene glycol dimethacrylate), AIMN (2,2’-azobis-2-methylbutyronitrile),  

AIBN (2,2’-azobisisobutyronitrile) 

3.1. MIPs Sorbent Efficiency 

Prepared MIPs are powerful sorbents for triazine removal. For example, MIP loading 

capacity is 5.5 and non-imprinted polymer (NIP) capacity is 1.8 µg of pesticide per fiber 

(Barahona et al., 2016). The selectivity coefficients, defined as the extraction amount 

ratio of MIP to NIP are 9.7, 9.2, 9.1, 9.3 and 1.9 for atrazine, 2-amino-4-methoxy-6-

methyl-1,3,5-triazine (TRI), ametryn, terbuthylazine and metribuzin, respectively (Chen 

et al., 2014). The same authors (Chen et al., 2014) showed that the preconcentration 

factors for MIP fiber were 9.5, 11.8, 47.3 and 26.5 for TRI, atrazine, ametryn, and 

terbuthylazine, respectively, leading to an effective enrichment by the developed method. 

In another study (Sanagi et al., 2015) enrichment factors for atrazine and secbumeton 

were 77.5 and 88, respectively. Furthermore, chromatograms obtained after classic solid-

phase extraction of triazine from water showed a big hump corresponding to humic and 

fulvic acids and a dirty baseline, while after the supported-liquid membrane-protected-

MIP-SPE procedure the obtained chromatograms were clean, indicating high selectivity 

of MIP fibers (Turiel et al., 2016). 

3.2. Membrane-based Extraction Methods in Triazine Analysis 

Among several developed microextraction membrane-based methods, such as 

membrane-protected solid-phase microextraction (MP-SPME), hollow-fiber liquid-phase 

microextraction (HF-LPME), thin film microextraction (TF-ME), electromembrane 

extraction (EME) (Carasek and Merib, 2015), in triazine polluted water analysis prevail 

MP-SPME and HF-LPME (Chen et al., 2014; Sanagi et al., 2015; Barahona et al., 2016; 

Turiel et al., 2016). In MP-SPME pollutants are adsorbed on SPME fiber which is inside 

the membrane which serves as protection, while in HF-LPME pollutants are firstly 

liquid-liquid extracted from the sample into a supported liquid membrane in the pores of 

a hollow fiber and then into acceptor solvent placed into the fiber’s lumen (Carasek and 

Merib, 2015). Pollutant extraction is a mass-transfer process, therefore the main factors 

affecting extraction efficiency are extraction time and stirring rate. Extraction time is a 
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compromise between sensitivity and repeatability of the analytical method (Carasek and 

Merib, 2015) and may vary, whereas diffusion of pollutants from water to the membrane 

is favored at higher stirring rates (Chen et al., 2014; Barahona et al., 2016). Table 2 

represents the average triazine recoveries obtained with developed methods, under 

optimized conditions. 

Table 2. A review on triazine recoveries from water spiked at different levels 

Triazine Determination 

technique 

Limit of Detection 

(µg/L) 

Recovery (%)/Spike 

level (µg/L) 

Reference 

Ametryn HPLC/UV 0.32 76.4a/10 Chen et al., 2014 

HPLC/DAD 3.8 80.7b/50 

86.7c/50 

Xu et al., 2014 

Atrazine HPLC/UV 30 6.2b/1 

5.4c/1 

Barahona et al., 

2016 

HPLC/UV 0.18 77.9a/10 Chen et al., 2014 

HPLC/DAD 0.024 101.3b/0.1 Turiel et al., 

2016 0.028 92.5d/0.5 

HPLC/DAD 3.2 83.3b/50 

88.2c/50 

Xu et al., 2014 

GC/MS 0.47 88e/10 

124a/10 

Sanagi et al., 

2015 

Cyanazine HPLC/UV 100 7.9b/1 

6.8c/1 

Barahona et al., 

2016 

HPLC/DAD 0.027 88.1b/0.1 Turiel et al., 

2016 0.03 93.1d/0.5 

Propazine HPLC/UV 100 7.9b/1 

7.9c/1 

Barahona et al., 

2016 

HPLC/DAD 0.024 96.2b/0.1 Turiel et al., 

2016 0.026 89.6d/0.5 

HPLC/DAD 8.6 66.4b/50 

65.3c/50 

Xu et al., 2014 

Secbumeton GC/MS 0.42 91e/10 

107.4a/10 

Sanagi et al., 

2015 

Simazine HPLC/UV 100 6.8b/1 

5.6c/1 

Barahona et al., 

2016 

HPLC/DAD 0.022 82.4b/0.1 Turiel et al., 

2016 0.026 77.6d/0.5 

Simetryn HPLC/DAD 4.5 81.2b/50 

76.4c/50 

Xu et al., 2014 

Terbutylazine HPLC/UV 50 8b/1 

7.9c/1 

Barahona et al., 

2016 

HPLC/UV 0.35 72.8a/10 Chen et al., 2014 

HPLC/DAD 0.026 102.9b/0.1 Turiel et al., 

2016 0.024 94.8d/0.5 
a 
Lake water; 

b 
Tap water; 

c 
River water; 

d 
Well water; 

e 
Stream water;  
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4. CONCLUSION 

Membrane technology is an indispensable part of the water treatment. In this 

treatment membrane technology takes the final position due to possible pore blocking and 

membrane fouling which why is necessary to have an effluent of a certain purity degree. 

When the significant part of impurities (suspended matter, bigger particles) is removed, 

the next step is fine water purification of low-molecular or low-concentration pollutants, 

by membrane techniques. Efficient removal of organic micro-pollutants can be achieved 

considering the properties of the membrane and pollutant, but also of the feed-water. 

Matching the pollutant and membrane pore size, membrane processes that can be used 

for the removal of triazine pesticides are NF and ULPRO. With these, the percentage of 

triazine retention is satisfactory i.e. in most of the cases above 85 %. But studies have 

shown that membrane selection versus pesticide size is not the only important factor, 

because membrane-surface-pesticide interactions also participate in pesticide retention. 

These interactions become significant especially when the pesticide size is in the range of 

the membrane pore size. Although is better to have an effluent of certain purity, due to 

membrane productivity maintenance, it was shown that membrane fouling with natural 

organic matter positively affects triazine retention. 

In addition to productivity, selectivity is also important for membrane performance. 

The higher selectivity of the membrane usually means a 100 % removal of a pollutant 

and nowadays selectivity is improved through the molecular imprinting technology. This 

technology has especially found its application in triazine analytical determination, 

because MIPs that are used as membranes have high selectivity towards template-triazine 

and its analogs, providing high enrichment factors and therefore leading to greater 

sensitivity and accuracy of determination technique. These polymers, used in different 

microextraction techniques (MP-SPME, HF-LPME) through validation studies have 

shown high triazine removal percentage.  
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PRIMENA MEMBRANSKIH TEHNOLOGIJA  

U TRETMANU I ANALIZI PESTICIDA  

IZ KLASE TRIAZINA U ZAGAĐENIM VODAMA 

Kvalitet vode za piće je u opadanju usled sve većeg zagađivanja voda uzrokovanog proizvodnjom 

i upotrebom hemijskih sredstava. Značajan deo ovih supstanci su pesticidi iz klase triazina zbog toga 

što se u poljoprivredi široko primenjuju kao herbicidi. Tehnike za prečišćavanje voda se uglavnom 

zasnivaju na mehanizmu razdvajanja, gde kao najkorisinije prednjače membranske tehnologije. 

Membranski procesi koji se najčešće koriste u prečišćavanju voda su mikrofiltracija, ultrafiltracija, 

nanofiltracija i reverzna osmoza. Procenat zadržavanja polutanata od strane membrana zavisi od 

osobina same membrane tj. materijala od kojeg je napravljena, poroznosti, veličine pora i od osobina 

molekula polutanta tj. veličine, težine, hidrofobnosti, dipolnog momenta. Procenat zadržavanja takođe 

zavisi i od kvaliteta i sastava vode koja se prečišćava (prisustva organske materije ili soli, 

koncentracije polutanta, pH vrednosti), tako da efektivno prečišćavanje vode zahteva određeni stepen 

kompatibilnosti između membrane i zagađujuće materije. Membranske tehnologije su značajne i iz 

razloga što se koriste u analizi voda zagađenih triazinima, tačnije sastavni su deo ekstrakcije 

polutanata. Među nekoliko razvijenih tehnika ekstrakcije na bazi membrana, u analizi triazina 

prednjače mikroekstrakcija na čvrstoj fazi zaštićenoj membranom i tečno-čvrsto mikroekstrakcija sa 

čvrstom fazom u vidu šupljeg vlakna. Na ovom polju istraživači teže da kompatibilnost između 

polutanta i membrana postignu kroz tehnologiju molekulskog imprintovanja (sintezu polimera koji 

imaju mogućnost „prepoznavanja“ određenog molekula). 

Ključne reči: membranske tehnologije, triazini, prečišćavanje vode, zagađenje vode 


