FACTA UNIVERSITATIS
Series: Physics, Chemistry and Technology Vol. 16, N ${ }^{\circ}$ 1, Special Issue, 2018, p. 86
49th International Symposium on Essential Oils (ISEO2018) • Book of Abstracts

PP22. Small changes in the distillation method result in variable quality of yarrow (Achillea collina) essential oil

Éva Zámboriné Németh ${ }^{1 *}$, Klára Ruttner ${ }^{1}$, Péter Radácsi ${ }^{1}$

Keywords: yarrow, extract, solvent, decantation, sesquiterpene
Achillea collina (Becker ex Rchb.f.) Heimerl (Asteraceae) is one of the yarrow species providing the chamazulene containing, characteristic blue essential oil by water distillation. The chamazulene content varies on a large scale [1,2]. Besides several other factors-like the determination of the species and taxon, geographical and ecological characteristics of the habitat, sampling, and GC analytical methods-which have been studied and discussed more frequently, the method of distillation and oil recovery might have a large influence on the quality of the oil, too. Unfortunately, the applied solvents, evaporation/drying methods and/or further dilution is almost never described accurately in manuscripts. Therefore, a well-established comparison and evaluation of the results is at least questionable. In our recent experiment, this aspect was investigated in detail. As plant material, a high chamazulene-containing strain of A. collina was used, selected and maintained at our experimental station. Dried flowering shoots were distilled in a Clevenger type apparatus: a) as in Pharmacopoeia Hungarica VII, b) as in Ph.Hg.VIII (=Ph.Eur.). For the second treatment, different solvents were applied for washing the sesquiterpene-rich oil of large viscosity: a) n-hexane, b) n-pentane, c) xylol, d) ethanol (96%), e) acetone. The recovered oil was analyzed a) immediately after the washing down, b) after the evaporation of the solvent-as for measuring the yield-diluted by different amounts of hexane again (resulting in $0.3,1.0,5.0,10 \%$ concentrations) for the injection into the GC apparatus. The GC-MS analysis was carried out as in [3]. The results show that based on the above circumstances and factors, the number of GC peaks varied between 4 and 68. Chamazulene content of the oil samples changed between 45 and 78% of the total GC area percentage and a higher dilution rate of the extracts increased the ratio of chamazulene. Evaporation of the solvents resulted in a severe loss of volatile monoterpenes. At the same time, the proportion of α bisabolol remained more constant ($18-25 \%$) but its ratio increased with the b-type of apparatus. Although internal standards might help quantification, however, the studied factors may influence severely the analytical results and any comparison. A wellestablished, standardized method of distillation and subsequent oil recovery process would be of high importance in the case of sesquiterpene-rich species.

References:

[1] Kindlovits, S., Németh, É., 2012. Acta Aliment. Hung. 41, 92-103.
[2] Németh, É., 2005. J. Essent. Oil Res. 17, 501-512.
[3] Huong, T.N. et al., 2018. Biochem. Syst. Ecol. 79, 1-7.

[^0]
[^0]: ${ }^{1}$ Szent István University, Department of Medicinal and Aromatic Plants, H-1118 Budapest, Villányi str. 35-43, Hungary.
 *Corresponding author: Zamborine.Nemeth.Eva@kertk.szie.hu

