PP81. Chemical composition and antimicrobial activity of *Glebionis coronaria* (L.) Cass. ex Spach essential oil

Esra Yıldırım¹*, Hüseyin Servi², Betül Eren Keskin³, Kaan Yılancıoğlu⁴

Keywords: *Chrysanthemum coronarium*, essential oils, antimicrobial activity

Glebionis coronaria (L.) Cass. ex Spach (syn. *Chrysanthemum coronarium* L.) is a member of the Asteraceae plant family which has extensive edible, folk medicinal, insecticidal uses. Previously, an essential oil of flowerheads of *C. coronarium* from Spain was reported to contain camphor (29.2%), α-pinene (14.8%), β-pinene (9.5%), and lyratyl acetate (9.8%). The oil was shown to possess significant antifungal activity [1]. Also, the essential-oil composition and antimicrobial properties of *C. coronarium* from Ukraine were investigated. The major constituents were found to be chrysanthemyl acetate (24.4%), chrysanthemol (21.8%), chrysanthenyl acetate (7.6%), camphor (7.3%), β-farnesene (5.9%), and α-bisabolol (5.6%). An ethanolic extract of the plant showed antimicrobial activity against Gram-positive (*S. aureus*) bacteria. [2]. Biological activities of the essential oil of *C. coronarium* from Jordan were also reported. The essential oil showed a significant antimicrobial activity against Gram-positive bacteria. Also, the oil showed moderate antioxidant activity, weak acetylcholinesterase-inhibitory and potent antiproliferative activities [3]. In the current study, the essential oil of the aerial parts of *G. coronaria* was obtained by hydrodistillation (3 h). The essential-oil composition was analyzed by means of gas chromatography-mass spectrometry (GC-MS). The main components of the essential oil from the aerial parts were capillene (54.5%) and caryophyllene oxide (9.8%). The current composition differed from the previously reported ones. Thus, *G. coronaria* originating from Istanbul belongs to a new chemotype of this species. Additionally, the antimicrobial activity of the oil was investigated against Gram-negative (*Escherichia coli* DH5α) and Gram-positive (*Staphylococcus aureus* 17.1%), tested at 75 mg/mL. The antimicrobial effects of the essential oil were more pronounced against Gram-negative bacteria.

References:

¹Istanbul Sabahattin Zaim University, Helal Food and R&D Center, Istanbul, Turkey; ²Altinbas University, School of Pharmacy, Istanbul, Turkey; ³Üsküdar University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey; ⁴Üsküdar University, Faculty of Engineering and Natural Sciences, Chemical and Biological Engineering.

*Corresponding author: e.yildirim@izu.edu.tr