PP67. Identification and 2D NMR structural elucidation of a C10-polyacetylenic ester, a previously unreported constituent of *Bellis perennis* L. essential oil

*Milica G. Nikolić*1*, Niko S. Radulović1

Keywords: *Bellis perennis* L., polyacetylenic ester, structural elucidation, 2D NMR, matricaria ester

Common daisy, *Bellis perennis* L., is a widespread herbaceous perennial plant species from the Asteraceae family. Although it has a history of traditional use for the treatment of a variety of health conditions [1], up to now only a few studies dealt with the composition of the essential oil of this plant taxon [1]. Hydrodistillation of the fresh aboveground parts, collected at the beginning of anthesis from a wild-growing population in Serbia (Jelašnica gorge), yielded a small amount of a light green essential oil (0.022%), which was analyzed by GC-MS and a total of 33 compounds was identified (97.1%), with polyacetylenes as one of the major chemical classes detected. The essential oil was chromatographically separated on a 10% AgNO3-coated silica column, which resulted in one polyacetylene-enriched fraction. GC-MS analysis of this fraction revealed the presence of two C10 polyacetylenic compounds. One of them was identified as methyl deca-4,6-diynoate (2,8-tetrahydromatricaria ester), previously reported [1] as one of the main polyacetylenes present in the essential oil of *B. perennis*. Literature data [1] and the mass spectrum of the other polyacetylenic compound, present in the oil in trace amount, suggested that it was likely to be a lachnophyllum ester (8,9-dihydromatricaria ester). Direct analysis of 1H- and 13C-NMR (at 400 MHz, in CDCl3) spectra of the obtained fraction proved to be challenging, due to signal overlap. However, a combination of 2D NMR experiments (gradient 1H-1H COSY, HMBC, and HSQC) enabled a full structural assignment. The compound in question was demonstrated to be methyl (Z)-deca-8-en-4,6-diynoate (i.e. a 2,3-dihydromatricaria ester), which, to the best of our knowledge, has not been reported in *B. perennis* until now. It is possible that the previous reports [1] of lachnophyllum esters in common daisy essential oil, based solely on MS data, are in fact incorrect due to minor differences in the mass spectra of the isomeric esters.

References:

Acknowledgments: The authors acknowledge the Ministry of Education, Science and Technological Development of Serbia for financial support (project 172061).

1Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, RS-18000 Niš, Serbia.

*Corresponding author: milica.nikolic.1990@gmail.com