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Abstract. This is a review of some of our recent work concerning Noncommutative Field 

Theory founded on          gauge symmetry. One significant feature of this approach 

is that gravitational field, given by the vierbein, becomes manifest only after a suitable 

gauge fixing and it is formally united with other gauge fields. Starting from a model of 

pure noncommutative gravity, we extend it by introducing fermions and Yang-Mills gauge 

field. Using the enveloping algebra approach and the Seiberg-Witten map we construct 

corresponding actions and expand them perturbatively in powers of the canonical 

noncommutativity parameter    . Unlike in the case of pure noncommutative gravity, first 

non-vanishing noncommutative corrections are linear in the noncommutativity parameter 

and they describe the coupling of matter and gauge fields with gravity due to spacetime 

noncommutativity. This is augmented by the fact that some of these corrections pertain 

even in flat spacetime where they induce potentially observable noncommutative 

deformations. We discuss the effects of noncommutativity on electron’s dispersion 

relation in the presence of constant background magnetic field – Landau levels. Our 

results could be useful for further investigation of phenothe menological consequences of 

spacetime noncommutativity. 

Key words: NC gravity, Seiberg-Witten map, AdS gravity 

1. INTRODUCTION 

Noncommutative (NC) Field Theory, i.e. the theory of relativistic fields on 

noncommutative spacetime, is a valuable effective theory of the underlying fundamental 

theory of quantum gravity. It is based on the method of deformation quantization via NC 
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 -products. One speaks of a deformation of an object/structures whenever there is a family of 

similar objects/structures for which we can parametrise their „‟distortion‟‟ from the original, 

“undeformed” one. In physics, this so-called deformation parameter appears as some 

fundamental constant of nature that measures the deviation from the classical (undeformed) 

theory. When it is zero, the classical theory is restored. To deform a continuous structure of 

spacetime, an abstract algebra of NC coordinates is introduced. These NC coordinates, 

denoted by  ̂ , satisfy some non-trivial commutation relations, so it is no longer the case that 

 ̂  ̂   ̂  ̂ . Abandoning this basic property of spacetime leads to various new physical 

effects that were not present in the theory developed on “classical” spacetime. The simplest 

case of noncommutativity is the so called canonical noncommutativity, defined by 

   ̂   ̂           (1) 

where     are components of a constant antisymmetric matrix. 

Instead of deforming abstract algebra of coordinates one can take an alternative, but 

equivalent, approach in which noncommutativity appears in the form of NC  -products of 

functions (fields) of ordinary commutative coordinates. Specifically, to establish canonical 

noncommutativity, we use the NC Moyal-Weyl  -product:  

   ̂   ̂      
 

 
     

   
 

                   (2) 

The first term in the expansion is the ordinary point-wise multiplication of functions. 

The quantities     are assumed to be small deformation parameters that have dimensions 

of          . They are fundamental constants, like the Planck length or the speed of light. 

The subject of NC gravity has received a lot of attention and various approaches to this 

problem have been developed. In Refs. (Chamseeddine, 2001; Chamseeddine, 2004; 

Cardella and Zanon, 2003) a deformation of pure Einstein gravity via Seiberg-Witten (SW) 

map is proposed. The twist approach is explored in Aschieri et al., 2005; Aschieri et al., 

2006; Ohl and Schenckel, 2009; Aschieri and Castellani, 2010. Lorentz symmetry in NC 

QFT is considered in Chaichian et al., 2004; Chaichian et al., 2005. The extension of NC 

gauge theories to orthogonal and symplectic algebras is treated in Bars et al., 2001; Bonora 

et al., 2000. Some other proposals can be found in Yang, 2009; Steinacker, 2010; Burić and 

Madore, 2008; Klammer and Steinacker, 2009; Harikumar and Rivelles, 2006; Dobrski, 

2011; Burić et al., 2006; Burić et al., 2008. The connection to Supergravity (SUGRA) is 

made in Aschieri and Castellani, 2009a; Castellani, 2013. Finally, in Dimitrijević Ćirić et 

al., 2017a; Dimitrijević Ćirić et al., 2017b; Dimitrijević et al., 2012; Dimitrijević and 

Radovanović, 2014, an approach based on canonically deformed anti de Sitter (AdS) group 

        is established. NC gravity is treated as a gauge theory and it becomes manifest 

only after a suitable symmetry breaking (gauge fixing). Action was constructed without the 

previous introduction of the metric tensor and the second order NC correction to the 

Einstein-Hilbert action was found explicitly. Special attention has been devoted to the 

meaning of the coordinates used. Namely, it was shown that coordinates in which we 

postulate canonical noncommutativity are the Fermi inertial coordinates, i.e. coordinates of 

an inertial observer along the geodesic. A commutator between arbitrary coordinates can 

be derived from the canonical ones ( see Dimitrijević Ćirić et al., 2017a).  

The success of the pure gravity model led us to consider matter and non-gravitational 

gauge fields in the          framework. Dirac spinor field coupled to      gauge field 

on NC spacetime is introduced in Goĉanin and Radovanović, 2018; Dimitrijević-Ćirić et 
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al., 2018, and physical consequences such as NC deformation of free electron‟s dispersion 

relation and NC deformation of its Landau levels have been analysed. From a different 

perspective, the problem was also treated by Aschieri and Castellani (Aschieri and 

Castellani, 2009b; Aschieri and Castellani, 2012; Aschieri and Castellani, 2013; Aschieri, 

2014). Here we will present the most important results concerning the          

framework.  

2. MATTER AND GAUGE FIELDS IN         GAUGE THEORY OF GRAVITY 

In the first-order formalism (gauge theories of gravity) fermions couple naturally to the 

gravitational field. On the other hand, to couple gauge fields to the gravitational field one 

normally requires the existence of Hodge dual operation. To define the Hodge dual, the 

metric tensor must be known explicitly, which means working in the second-order 

formalism. This difference becomes even more evident in the         model of gravity. 

Namely, in this model t,he basic dynamical field is the         gauge field, which splits 

into the         spin-connection and vierbein (tetrade) only after the gauge fixing 

(symmetry breaking). In this section, we present classical (undeformed) actions involving 

the Yang-Mills gauge field and the Dirac spinor field in the         gravity model.  

2.1. Pure gravity 

Before introducing fermions and the Yang-Mills gauge field, let us briefly review the 

basics of         gauge theory of gravity and set the notation. Generators of         

gauge group are denoted by     (group indices       take values          ) and they 

satisfy AdS algebra: 

                                             (3) 

where     is    flat metric with signature (+, , , , +). By introducing momenta 

generators as    
 

 
   , where   is a constant length scale, we can recast the AdS 

algebra (3) in a more explicit form:  

                                             (4) 

                                                
 

   
       (5) 

In the limit     the AdS algebra reduces to the Poincaré algebra (Wigner-Inonu 

contraction). A realization of (3) can be obtained from    gamma-matrices    that 

satisfy Clifford algebra:              ; the generators are given by     
 

 
       . 

One choice of    gamma-matrices is              , where    are the usual    

gamma-matrices. Indices       take values        . In this particular representation, 

        generators are:     
 

 
        

 

 
    and     

 

 
  . The total gauge field 

   takes values in the Lie algebra of         and it decomposes into   
   and   

   
 

 
  

 , that is  

    
 

 
  

      
 

 
  

      
 

  
  

      (6) 



34 M. DIMITRIJEVIĆ-ĆIRIĆ, D. GOĈANIN, N. KONJIK, V. RADOVANOVIĆ 

 

The field strength tensor is defined in the usual way:  

                        

  
 

 
   

          
   

 

  
   

   
    

   
   

   

 
    

    

 
   (7) 

with  

    
       

       
     

    
     

    
            

       
      

     
    (8) 

Equations (6), (7) and (8) suggest that one can identify   
   with the spin connection of the 

Poincaré gauge theory,    
   with the vierbein,    

   with the curvature tensor and     
   with 

torsion. It was shown in the     that one can indeed make such an identification and relate 

AdS gauge theory with GR. Note that, in this framework, the vierbein field   
  is treated as an 

additional gauge field, standing on equal footing with the spin-connection. This unification is 

an important feature of the theory with         gauge symmetry. Vierbein is related to the 

metric tensor by      
   

      and         
   √  .  

A necessary step in obtaining GR from         gauge theory of gravity is the gauge 

fixing, i.e. symmetry breaking from local         down to local        . To do so, one 

introduces an auxiliary field       . We break the symmetry by fixing the value of the 

auxiliary field, in particular, by setting      and     . This field is a spacetime-scalar 

and a        -vector and it is constrained by:        . It transforms in the adjoint 

representation of         and its covariant derivative is 

                   (9) 

After the gauge fixing, the components of     reduce to          
  and 

        . This is how we get the vierbein field   
  from the auxiliary field  . In Refs. 

(Stelle and West, 1980; MacDowell and Mansouri, 1977; Towsend, 1977; Wilczek, 1998), 

a commutative (undeformed) action for pure gravity with         gauge symmetry was 

constructed. Also, in Chamseddine and Mukhanov, 2010; Chamseddine and Mukhanov, 

2013, GR is formulated by gauging         or, more suitably for SUGRA,         

group. Building on their work, the         model of pure gravity action and its NC 

deformation were analyzed in Dimitrijević Ćirić et al., 2017a. We will not repeat that 

discussion here but merely present some of the main results. Before the gauge fixing, the 

action consists of three parts:  

    
    

     
  ∫                       (10) 

    
  

       
  ∫                               (11) 

     
   

       
  ∫                             (12) 

After the gauge fixing, we finally obtain 

   
  

     
∫      .

    

  
             

     
   √  (         

 

  
            )/   (13) 

For the sake of generality, three a priori undetermined dimensionless constants are 

introduced. They can be fixed by some consistency conditions. The first part is the 
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topological Gauss-Bonnet term which does not affect the equations of motion (note that we 

work in four-dimensional spacetime), and so, we can set     . The Einstein-Hilbert term 

requires        , while the absence of the cosmological constant is provided with 

            .  

Concerning the NC deformation of the model, here we just want to emphasize the most 

important conclusions (for details see Castellani, 2013; Dimitrijević Ćirić et al., 2017a). 

After deformation and perturbative expansion in powers of    , it was found that the first 

order NC correction to the commutative action equals zero. The first non-vanishing 

correction is quadratic in the NC parameter. The equations of motion for the vierbein and 

the spin-connection in the low energy limit indicate that noncommutativity is a source of 

both curvature and torsion. It was also found that in          model, there are residual effects 

of noncommutativity in the limit of flat spacetime, namely, that there actually exists a canonical 

NC deformation of Minkowski space, and NC correction to the flat Minkowski metric suggests 

that the coordinates    we started with, those which satisfy the NC-deformed commutation 

relations                , are actually Fermi normal coordinates. These are the inertial 

coordinates of a local observer moving along a geodesic. The breaking of diffeomorphism 

symmetry due to canonical noncommutivity is understood as a consequence of working in 

a preferred reference frame given by the Fermi normal coordinates. A local observer 

moving along the geodesic measures     to be constant. In any other reference frame this 

will not be the case.  

2.2. Yang-Mills field 

Introducing a non-Abelian       gauge field,      
    requires an upgrade of the 

original gauge group         to              . Generators    of       group are 

hermitian, traceless and they satisfy the (anti)commutation relations:                 

and               , with antisymmetric structure constants      and totally symmetric 

symbols                   . We use the normalization             .       group 

indices    ,... run from   to     . The total gauge potential of               

group is given by  

    
 

 
  

            
       (14) 

and the corresponding total field strength     is the sum of the gravitational part     and 

the Yang-Mills part    , that is  

     
 

 
   

             
       (15) 

with the usual    
      

      
           , where   is the Yang-Mills coupling 

strength. We define action for Yang-Mills gauge field    that is invariant under 

              transformations, as follows:  

    
 

   
  ∫            ,            

 

 
               -       (16) 

It involves an additional auxiliary field   defined by  

   
 

 
                               (17) 
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where the gauge parameter  

   
 

 
                (18) 

consists of the         and the       part. The field   transforms in the adjoint 

representation of         and       group. The role of this field is to produce the 

canonical kinetic term in curved spacetime for the       gauge field in the absence of the 

Hodge dual. The auxiliary field        is invariant under       gauge 

transformations and its full covariant derivative is given by  

                                 (19) 

By setting      and      in (16) we break         gauge symmetry down to 

the local Lorentz         symmetry and obtain  

    
 

 
∫                

   
 
  

  
 

 
∫                 

           
      (20) 

Equations of motion (EoMs) for the auxiliary field are  

    
             

     
 
  

    
     (21) 

Evaluating      on these EoMs we eliminate from it the auxiliary field   and so we 

have 

        
 

 
∫                

 
  

   
 
  

    
    

   
 

 
∫      √             

    
  (22) 

and this is exactly the canonical kinetic term for Yang-Mills gauge field in curved 

spacetime.  

2.3. Dirac field 

The problem of introducing fermions in the framework of         gauge theory of 

gravity was solved in Goĉanin and Radovanović (2018) and that procedure will not be 

repeated here; we will merely state the main results. In the context of       Yang-Mills 

theory, we introduce a multiplet of Dirac spinors 

   (
  

 
  

)    (23) 

that transforms under infinitesimal gauge transformation as  

                           
 

 
   

                (24) 

Its covariant derivative is given by 

                         
 

  
  

          
             (25) 

The commutative fermionic action is defined by 

    
 

  
∫             ̅                ̅              (26) 

and after the symmetry breaking, it reduces to   
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     ∫       ,
 

 
 ̅  

       
 

 
   ̅  

     
 

 
 ̅    ̅  

     
    -   (27) 

This is exactly the action for the spinor field   in curved spacetime we sought for, 

except for the unusual     mass term which seems to be universal in the sense that every 

fermion in the theory, after quantisation, would have the same mass. But, we want to be 

able to have fermions with an arbitrary mass  . For that, we have to include additional 

              invariant terms in the action. We will call them "mass terms"      

          and they are given by 

     
 

   
 
 

 
 

 

  
 ∫              ̅                ̅                   

     
  

   
 
 

 
 

 

  
 ∫              ̅                ̅                   

     
 

  
 
 

 
 

 

  
 ∫              ̅                  (28) 

After the symmetry breaking, the sum of the three mass terms in (28), denoted by   , 

reduces to  

     (  
 

 
) ∫           ̅     (29) 

and when we add this to action (27), the universal     term exactly cancels, and we are 

left with the fermions of mass  . In this way, we can get an arbitrary spectrum of fermion 

masses in the theory. Thus, we have a complete and consistent model of               

invariant Yang-Mills theory. Now we want to deform it.  

3. NC DEFORMATION OF YANG-MILLS THEORY 

To canonically deform a gauge field theory, we take a model of commutative action 

endowed with some gauge symmetry, such as (16) or (26), and replace ordinary 

commutative multiplication by the noncommutative Moyal-Weyl  -product defined in (2). 

The fields of the deformed theory are denoted by a "hat" symbol and, by definition, their 

transformation laws under the deformed gauge transformations have the same structure as 

those for ordinary fields under ordinary gauge transformations. One introduces NC spinor 

field  ̂, NC adjoint field  ̂ and NC gauge potential  ̂ ; we use this gauge potential to 

construct NC field strength, 

  ̂      ̂     ̂     ̂   
  ̂      (30) 

The covariant derivatives of NC spinor and the adjoint field have the same structure as 

in the underlying commutative theory, 

    ̂     ̂    ̂   ̂  

       ̂     ̂     ̂    ̂     (31) 

Fields  ̂  and  ̂ , along with their covariant derivatives (31), transform in the 

fundamental and adjoint representation, respectively, under NC gauge transformations. 

Infinitesimally:  
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  ̂    ̂   ̂           

    ̂    ̂     ̂    

   
  ̂     ̂   

  ̂          
    ̂     ̂   

    ̂     (32) 

The NC field strength also transforms in the adjoint representation,   

   
  ̂      ̂   

  ̂       (33) 

In all the above formulas,  ̂  stands for a NC gauge parameter whereas   is a 

commutative gauge parameter. The transformation law for NC gauge potential is:   

   
  ̂     ̂     ̂     ̂      (34) 

where    is the ordinary, commutative gauge potential. In general, however, there is a 

problem concerning the closure condition for NC gauge transformations. Generally, if the 

parameter  ̂ is supposed to be Lie algebra-valued,  ̂     ̂      , it follows that 

 [   

      

 ] ̂  ( ̂   ̂   ̂   ̂ )   ̂           

                                                    
 

 
(  ̂ 

     ̂ 
            ̂ 

     ̂ 
         )   ̂  (35) 

and so, the commutator of two infinitesimal NC gauge transformations does not generally 

close in the Lie algebra itself, since the anti-commutator         does not in general 

belong to this algebra. To overcome this difficulty, we will apply the enveloping algebra 

approach. The enveloping algebra of a gauge group is "large enough" to ensure the closure 

property of NC gauge transformations, if we allow the NC gauge parameter  ̂ to take 

values in it. The NC gauge potential  ̂  then also belongs to the enveloping algebra and 

can be represented in its basis. However, the enveloping algebra has an infinite basis, and 

so it seems that by invoking it we actually introduced an infinite number of new degrees of 

freedom (new fields) in the NC theory. The solution to the problem is the Seiberg-Witten 

map [38, 39]. It relies on the fact that NC fields can be represented as a perturbation series 

in powers of the deformation parameter    , with expansion coefficients built out of the 

commutative fields, e.g. NC field  ̂ can be represented as:   

  ̂    
 

 
                       (36) 

It is clear that at the lowest perturbative order NC fields consistently reduce to their 

undeformed counterparts.  

The complete NC-deformed Yang-Mills action (NC actions will be also denoted by a 

"hat" symbol) invariant under deformed                 gauge transformations is 

obtained by applying the above-described procedure to the commutative actions   ,   , 

and   , given by (16), (26) and (28), respectively. For example, the NC deformation of the 

pure Yang-Mills action    is given by  

  ̂   
 

    
  ∫             ̂   ̂      ̂     ̂   ̂ 

                               
 

 
 ̂   ̂     ̂     ̂     ̂     ̂   ̂       (37) 



 Introducing Matter Fields in          Model of Noncommutative Gravity 39 

 

 

Now we can take the SW-map and represent NC-deformed fields in terms of ordinary 

commutative ones. In general, the resulting action, as a perturbative series in    , 

possesses the gauge symmetry of the undeformed action, order-by-order. This important 

property is ensured by the SW-map. The whole procedure, including some methods for 

simplifying the calculation, can be found in Goĉanin and Radovanović (2018) and 

Dimitrijević-Ćirić et al. (2018).  

After the symmetry breaking and elimination of the  -field - as it turns out, when 

working up to the first order in    , to eliminate it, one only needs to insert the undeformed 

equations of motion (21) in the first order NC action, in particular, there is no need for 

calculating the first order NC correction of these equations, since it will, whatever form it 

takes, annihilate the undeformed action (20) because of its specific structure - it becomes:   

  ̂ 
   

  
   

  
∫                   (   

    
    

      
    

    
 )    (38) 

This is the first order NC correction to the pure Yang-Mills action in curved spacetime. 

Note that this result agrees with the one obtained in [40], which employs NC deformation 

by minimal substitution. Analogous procedure for spinors has been done in Goĉanin and 

Radovanović (2018).  

After the symmetry breaking, the spinorial part of the full NC action, involving the 

"kinematic" term  ̂  and the "mass terms"  ̂ , reduces to 

 ̂ 
   

  ̂ 
   

    ∫         ̅  
 

 
   

    
 
     

 

  
   

      
           

       

 
 

  
   

    
      

 
 

  
   

    
 
       

        
 

  
   

      
           

 (  
 
  

    
 
  

 )       
 

  
   

   
  

 

  
   

   
 
   

 

   
   

   
 
  

      
 

  
   

   
 
  

      
 

   
   

    
         

   
 
  

      
  

    
    

           
   

   
        

 

  
  

        
 

 
     

     
 
  

    
   

 
        

 

 
        

       
         

 
  

   
        

 

  
     

       
    

        
 
  

   
          

 

   
  

      
     

         
   

      
 

  
     

     
 
  

    
   

 
   

       
    

 

  
     

    
 
  

        
 

   
   

      
 

   
   

    
 
  

     
 

   
   

       
 
  

    
  

     
   

    
  

     
   

   
 
   

 

    
   

     
  

  

     
     

    
 
   

 

    
     

      
  

 

    
    

  

 
     

      
 

 
     

      
 

  
           (39) 

where we introduced the               covariant derivative:   

             
         (40) 

This result exhibits the type of couplings between fermions and gravity that emerge due 

to spacetime noncommutativity. Evidently, some of them pertain even in flat spacetime. 

From the curved spacetime NC actions (39) and (40) we can derive NC-deformed action 

for Yang-Mills theory in Minkowski space. It comes down to 

  ̂     ∫          ̅      
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 ̅  

           
  

    
   

        
 ̅        

  

 
 ̅          

  
 

 
 ̅         

 

   
 ̅     

 

  
 ̅      

  
   

  
            (   

    
    

      
    

    
 )    (41) 

As we can see, the first non-vanishing NC correction is linear in    , and this leads to 

some potentially observable physical effects. We will examine them in the case of NC 

Electrodynamics.  

4. ELECTRON IN BACKGROUND MAGNETIC FIELD 

From the NC-deformed action (41), in the case of      gauge symmetry, we can 

derive NC-deformed Dirac equation  

 (                   )       (42) 

with the linear NC correction given by   

                 
 

  
  

         
  

    
   

        
       (

 

   
 

 

   
)     

  
  

 
         

 

 
        (

  

 
 

 

  
)        (43) 

and investigate a special case of constant magnetic field      . We choose    

           accordingly. An appropriate ansatz for (42) is 

   (
    
    

)                    (44) 

Undeformed relativistic Landau levels are 

     
   

 √  
               . (45) 

Working perturbatively up to the first order in the parameter of noncommutativity and 

assuming, for simplicity, that only             , we get the NC correction to the 

relativistic Landau energy levels, 

     
   

  
  

    
   .  

         

    
   

  
/ *

 

    
 

 

   
+  

   

     
             (46) 

In the absence of the magnetic field, they reduce to   

     
   

  
  

    
   *

  

    
 

 

   
+  (47) 

Since      we see that constant noncommutative background causes Zeeman-like 

splitting of undeformed energy levels. The non-relativistic limit of NC energy levels is 

obtained by expending (46). If we also take      (which correspondes to an electron 

constrained to a NC plane) the expansion reads: 
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(48) 

where we introduced        
  

   
 

   

    
 as an effective mass and              

as an effective magnetic field. If we compare this expression with the one for undeformed 

energy levels     
   

, we can conclude that the only effect of noncommutaivity is to modify 

(renormalise) the mass of an electron and the value of the background magnetic field. This 

interpretation of constant noncommutativity is in accord with string theory. In the famous 

paper by Seiberg and Witten [39], it is argued, in the context of string theory, that coordinate 

functions of the endpoints of an open string constrained to a D-brane in the presence of a 

constant Neveu-Schwarz B-field (equivalent to a constant magnetic field on the brane) 

satisfy constant noncommutativity algebra. The implication is that a relativistic field theory 

on noncommutative spacetime can be interpreted as a low energy limit, i.e. an effective 

theory, of the theory of open strings. 

5. CONCLUSION 

We discussed the coupling of matter fields with gravity in the framework of NC 

         gauge theory of gravity. Using the Seiberg-Witten map and the enveloping 

algebra approach we constructed gauge invariant NC actions that can be represented as a 

perturbative series in powers of       In this way, we formulated NC Electrodynamics and 

NC Yang-Mills theory in curved space-time induced by NC          gravity. The flat 

spacetime limit of this model enables one to study the behaviour of an electron in a 

background electromagnetic field. Especially, corrections to the relativistic Landau levels 

of an electron in a constant magnetic field are derived along with their non-relativistic 

limit. It can be seen both from (46) and (48) that the NC correction to (non)-relativistic 

Landau levels depends on the mass  , the principal quantum number   and the spin  . In 

particular, the NC correction to energy levels will be different for different levels. 
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UVOĐENJE POLJA MATERIJE U          

MODEL NEKOMUTATIVNE GRAVITACIJE 

Ovo je pregled nekih skorašnjih rezultata koji se tiču nekomutativne teorije polja zasnovane na 

lokalnoj          simetriji. Jedan od bitnih aspekata ove teorije je to da se gravitaciono polje, 

opisano tetradom, ispoljava tek nakon odgovarajuće kalibracije kao i to da je gravitaciono polje 

formalno ujedinjeno sa ostalim kalibracionim poljima.. Polazeći od modela čiste nekomutativne 

gravitacije, proširićemo ga uvođenjem fermiona i Jang-Milsovog kalibracionog polja. Koristeći 

metod obavijajuće algebre i Sajberg-Vitenovo preslikavanje konstruisana su odgovarajuća dejstva 

koja su potom razvijena perturbativno po kanonskom parametru nekomutativnosti    . Za razliku 

od čiste nekomutativne gravitacije, prve nenulte korekcije u razvoju dejstva su linearne po parametru 

nekomutativnosti. One opisuju interakciju materije i kalibracionih polja sa gravitacijom usled 

nekomutativnosti prostor-vremena. Na ovo se nadovezuje i to da ove nekomutativne korekcije opstaju 

čak i u ravnom prostor-vremenu i gde uzrokuju potencijalno opservabilne efekte. Razmotrićemo 

uticaj nekomutativnosti na disperzionu relaciju elektrona u pozadinskom magnetnom polju, tj. 

nekomutativne Landauove nivoe. Naš rezultat bi mogao imati uticaj na dalje ispitivanje 

fenomenoloških posledica nekomutativnosti prostor-vremena.  

Kljuĉne reĉi: nekomutativna gravitacija, Sajberg-Vitenovo preslikavanje, AdS gravitacija 

 


