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Abstract. We investigate the weak probe pulse propagation through the atomic 

medium, in the presence of the strong control laser field, under the regime of the 

electromagnetically induced transparency (EIT). These fields couple to the medium by 

forming the 3-level ladder configuration. We focus on two distinct cases: closed system, 

which is a non-degenerate, and open system, where the middle level is 3-fold 

degenerate, and the additional levels are coupled to the other levels only via 

spontaneous emission. The spatio-temporal profile of the probe pulse envelope is 

obtained by using the formalism of Maxwell-Bloch equations with the help of the 

Fourier transform method. We study the influence of the control field Rabi frequency, 

the spectral half-width of the initial pulse and decay rates on the propagation of the 

probe pulse. Several important pulse parameters are also calculated and discussed. It 

is shown that the group velocity of light can be controlled in such a manner that one 

can switch from slow to fast light and vice versa when changing the control Rabi 

frequency and spectral pulse half-width. Moreover, the possibility of replacing the open 

with an effective closed system is also discussed. 
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1. INTRODUCTION 

During the past years, the substantial progress has been made in the field of the laser 

pulse propagation through various gaseous and cold-atomic media, even in the cases 

when the probe light intensity is very low (few photons per cross-section, Menzel, 2007, 

Scully and Zubairy, 1997). This is enabled by taking advantage of the quantum 

interference effect called electromagnetically induced transparency (EIT), which requires 
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the presence of one or more strong control fields (Fleischhauer et al., 2005, Marangos, 

1998). Under EIT conditions, the medium, previously opaque for probe light at the 

specific (resonant) frequency, now becomes transparent. The first experimental 

demonstration of the EIT was done by Boller et. al. in 1990 on strontium vapors (Boller 

et al., 1991). Under the EIT regime, the dispersion properties of the atomic medium are 

changed, thus leading to the formation of slow light which propagates through the 

medium with very small group velocity, which is experimentally achieved on lead vapors 

in 1992 by Harris et. al, with the group velocity of light being reduced 250 times (Harris 

et al., 1992). By using such media, it became possible to reduce the group velocity of 

light to 90 m/s in the optically dense hot rubidium gas (Kash et al., 1999), 17 m/s in the 

ultracold gas of sodium atoms (Hau et al., 1999), and even to 8 m/s in rubidium vapors 

(Budker et al., 1999). Furthermore, the complete light storage and pulse revival is 

performed by switching the control field(s) off, and then back on. With this technique, 

the original pulse can almost completely be recovered, which means that EIT media can 

serve as quantum memory elements based on the light storage (Lukin, 2003, Zhang et al., 

2011). By changing the properties of the control field(s) and other parameters, and thus 

affecting the occurrence of the EIT window, one can switch between slow light and fast 

light, which is the regime where the group velocity of light is larger than the vacuum 

speed of light (Boyd and Gauthier, 2009, Boyd and Narum, 2007). This property of such 

atom-lasers systems can be of use in the construction of optical switches and other optical 

devices, as well as in various applications in the fields of quantum optics and quantum 

information processing (Schmidt and Ram, 2000, Vitali et al., 2000). 

In many atom-lasers systems where the EIT effect is studied, one usually considers 

the set of energy levels where all the levels are coupled to one or several other levels 

from the same set via laser fields (closed quantum systems). This approach, however, 

does not allow much flexibility in the choice of the atom-lasers system which can be 

studied. The reason is that there are many systems of interest with one or several energy 

levels that are not coupled to any of the laser fields, but affect the whole system via 

spontaneous emission from and to other energy levels (open quantum systems). For 

instance, the experiments concerning the EIT are typically realized using atoms of 

alkaline (Rb, Na), alkaline earth (Sr, Ca) and rare earth metals (Yb). According to this, 

the levels of interest are their specific hyperfine levels. For example, when studying the 

lambda-type EIT, one can isolate the D1 levels of the 87Rb – namely,           

          and          . Here, one must consider the Zeeman degeneracy of these 

levels, which causes the system to be considered as the “chain lambda-type system”, i.e. 

the effective lambda-type system (Li et al., 2011, Li and Xiao, 1995). On the other hand, 

for the ladder-type EIT, the following levels of interest are chosen:          , 

          and          . The existence of the Zeeman degeneracy, in this case, 

leads to the fact that the spontaneous decay of the middle level          ) causes the 

increase of the population of the second hyperfine level of the ground state (        

 ). This effect can create the optical pumping phenomenon, which can cover up the EIT 

spectrum if the real system is considered as the simple, closed three-level ladder-type 

system (Noh and Moon, 2009, Noh and Moon, 2012). Therefore, one has to deal with the 

level of degeneracy by modeling its existence and physical implications by the effective 

3-level system (Badger et al., 2001, Guan and Yu, 2000, Moon and Noh, 2013, Reshetov 

and Meleshko, 2014). Some part of the research is already conducted in our previous 
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work, where the detailed examination of the absorption and dispersion curve with respect 

to several important parameters is given (Stevanović et al., 2018). We expand this vital 

study by focusing on the propagation of light through the EIT medium and investigating 

how the energy level degeneracy affects the probe pulse and parameters relevant to it, 

such as the group index, pulse duration and transmission coefficient. 

The degeneracy of the energy levels is not the exclusive property of gaseous media. 

The significant attention has been given to the study of the propagation of light through 

the solid-state media as well. Moreover, the discrete energy structure similar to one of the 

atoms is achieved in semiconductor heterostructures, such as quantum dots, which is why 

they are usually called artificial atoms. Here, the degeneracy of certain levels is also an 

important research topic. For instance, our previous research dealt with the EIT effect on 

the energy levels of the hydrogen impurity located in the center of the semiconductor 

spherical quantum dot (Pavlović and Stevanović, 2016, Pavlović et al., 2018). This study 

focuses on the interaction of the laser fields with the confined hydrogen atom, modeled as 

the three- or four-level system in the ladder configuration. Here, the polarization of the 

laser fields is chosen in such a way that they couple to the particular energy levels of the 

configuration and no other levels are considered, thus forming the closed system. For 

example, in Pavlović et al., 2018, the laser polarization is such that the probe laser excites 

the transition         , while the control laser excites the transition             As 

determined by the selection rules, level      decays to the level     only, while level 

     undergoes the spontaneous emission exclusively to the level     . However, if the 

polarization of the laser is chosen in a different way, such that the probe laser excites the 

transition         , while the control laser excites the transition          , the 

highest level     then decays to the levels     ,     and     , which, due to the 

spherical symmetry of the problem, all have the same energy. Therefore, this paper 

should explain how the existence of the additional levels     and      affects the 

parameters responsible for the appearance of the EIT effect, as well as the shape of the 

probe pulse itself at the exit of the medium. When dealing with these systems, one has to 

keep in mind the main difference between solid-state and gaseous systems – for solid-

state systems, in addition to the spontaneous emission, decoherence processes due to the 

electron-phonon interaction are also present and cannot be omitted even on room 

temperatures. Since we assume that only the decay processes due to the spontaneous 

emission are present in the systems we explore in this paper, we dedicate our research to 

the gaseous atomic systems and solid-state systems on cryogenic temperatures, where the 

spontaneous emission is the dominant source of decoherence. 

In this paper, the propagation of the weak probe laser pulse through the atomic 

medium in the presence of the additional, strong control field is studied. This atom-lasers 

system forms the 3-level ladder coupling scheme and satisfies the EIT condition in most 

of the paper. We distinguish between two cases: the first, where the atomic system is 

non-degenerate, and all the levels from the chosen set of energy levels are coupled to the 

corresponding levels of the same set via electromagnetic fields forming the closed 

quantum system, and the second, where the middle level is 3-fold degenerate, and the 

additional energy levels (two sublevels of the middle level) are not coupled to other 

levels via electromagnetic fields, but only through the spontaneous emission. In addition, 

we concentrate on the case where all the decoherence is completely due to the 

spontaneous emission, which practically holds for all the gaseous media used in EIT 

experiments, as well as for the solid-state media at cryogenic temperatures. In order to 
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compute the spatio-temporal profile of the envelope of the probe pulse, we adopt the 

density matrix formalism and solve Maxwell-Bloch equations with the help of the Fourier 

transform method. The obtained results are then analyzed with respect to the control field 

Rabi frequency, the spectral half-width of the input pulse and decay rates. Moreover, on 

the basis of these results, the group index, relative temporal pulse width and transmission 

coefficient are also calculated and discussed. We also discuss the differences between the 

probe pulse propagation for the closed and open system, as well as the possibility of 

replacing the open system with the closed system with the effective decay rate. 

This paper is organized as follows. In Section 2, we give the theoretical overview of 

the system in question, as well as the derivation of Maxwell-Bloch equations for the 

closed and open system. The solution process of Maxwell-Bloch equations is presented in 

Section 3, while in Section 4 the detailed analysis of the obtained results is given. Finally, 

we end this paper with a brief conclusion. 

2. THEORETICAL BACKGROUND 

We study the interaction of two electromagnetic fields with a certain atomic medium. 

Since our method is general, we do not specify the type of the medium – it can usually be 

an atomic gas, but the same formalism can be used for solid-state systems, such as 

artificial atoms. For the sake of simplicity, we use the term “atomic medium” when we 

refer to the quantum system with which laser fields interact. In this paper, we assume that 

the two laser fields, the weak probe field  ⃗  and strong control field  ⃗ , are coupled to 

the atomic medium by forming the ladder coupling scheme (Fig. 1). In Fig. 1 (a), all the 

levels of the chosen system are coupled to the corresponding levels of the same system 

via electromagnetic fields, and such a system is therefore called the closed quantum 

system. The energy levels of this system are labeled with    ,    , and    , with the 

corresponding energy values   ,    and   . Here, the dipole-allowed transitions are 
         (coupled by the probe field) and          (coupled by the control field), 

while          is a dipole-forbidden transition. On the other hand, we are also 

interested in the case when the middle level     is 3-fold degenerate, which is often the 

case for hyperfine levels of the alkaline atoms, which are usually used as a medium in 

EIT experiments. (Badger et al., 2001, Guan and Yu, 2000, Li and Xiao, 1995, Moon and 

Noh, 2013, Noh and Moon, 2009, Noh and Moon, 2012). Therefore, the other system of 

interest is depicted on Fig. 1 (b), obeying the same selection rules as the closed system 

and containing the two additional levels     and    , with the energies         . 

These two levels are not coupled to the laser fields but participate in decay processes, 

which is why this system is called the open quantum system (Moon and Noh, 2013). 
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Fig. 1 The ladder atom-lasers coupling scheme for the (a) closed and (b) open quantum 

system. All the relevant quantities are labeled and explained in the main text. 

In both cases, the Hamiltonian of the whole atom-lasers system is           , 

where    is the free atom Hamiltonian (             , with    being the energy of the 

eigenstate     of the atom) and             ⃗     ⃗   is the interaction term, with   

being the electric dipole operator. The electric field strengths of the probe and control 

laser are given by the following expressions: 

  ⃗    
 

 
(   

        
      )  ⃗   

 

 
    

        
         (1) 

where    (  ) and    (  ) stand for the complex electric field envelope and frequency of 

the probe (control) field, respectively. Having this in mind, and using the dipole and 

rotating-wave approximation in the co-rotating frame, the system Hamiltonian is reduced 

to the form (Stevanović et al., 2018): 

          
                         

               (     )     (2) 

where             , which is the same for both the closed and open system. In the former 

expression,                   (                 ) and             (    

       ) represent the Rabi frequency and the detuning of the probe (control) laser 

field, with     (   ) and                   (                 ) being the electric 

dipole transition matrix element and transition frequency for the transition          
(        ), respectively. 

In order to investigate the probe pulse propagation through the atomic medium, the 

density matrix formalism is firstly adopted. By knowing the Hamiltonian of the system of 

interest, the dynamics of the density matrix operator   can be determined by the Liouville 

equation (Scully and Zubairy, 1997): 

  
  

  
   

 

 
           (3) 

where the term    describes decoherence effects, which origin can generally be very 

different. Here, we shall assume that the dominant source of decoherence is the 

spontaneous emission, which is justified for atomic gases and for solid-state media at 
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cryogenic temperatures when the electron-phonon interaction is negligible. According to 

this, the decoherence term yields 

     
 

 
                       

 

 
                         

 
 

 
                         

 

 
                        

 
 

 
                        

 

 
                           (4) 

where the decay rate from state     to     due to the spontaneous emission is given by the 

well-known formula: 

     
   

  |   |
 

         (5) 

Eq. 4 is written for the open system, and the corresponding expression for the closed 

system can be obtained if we set                  . 

By replacing Eqs. 2 and 4 into Eq. 3, we obtain the optical Bloch equations (OBEs) 

for both the closed and open systems. For the closed system, we have 

  ̇       
                    (6) 
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while the OBEs for the open quantum system have the following form: 
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where    
      and Eqs. 11 and 26 represent the closure relations for the closed and 

open system, respectively. 

We complete the system of equations by adding the propagation equation for the 

probe field. In our case, we assume that the probe laser is a pulsed laser (with a temporal 

profile) which spreads all over the medium, and the control laser, which also covers the 

whole atomic sample, is a continuous-wave (cw) laser and no propagation equation for 

the control field is necessary. We choose the  -axis to be the propagation axis, so 

           and consequently           , while          , and both the probe 

and control field being polarized in the transverse direction with the unit vector  ̂. If the 

described coordinate system is chosen, we can rewrite the probe and control Rabi 

frequency as               and              , respectively, where    (  ) is the 

absolute value of the probe (control) electric field envelope,              ̂   ,   is the 

radius vector and   is the electron charge. The probe field propagation equation is then 

obtained from the wave equation, after the slowly-varying envelope approximation has 

been made, and takes the form (Boyd, 2007): 

  (
 

  
 

 

 

 

  
)    

  

    
    (27) 

Here,    is the envelope of the electric polarization of the medium due to the 

existence of the probe field, and can be calculated by knowing the coherence    , which 

corresponds to the transition        : 

                             (28) 

where   is the density of atoms inside the medium. By substituting Eq. 28 into Eq. 27, 

the propagation equation yields 

 (
 

  
 

 

 

 

  
)    

      

    
     (29) 

Eq. 29, together with Eqs. 6–11 (12–26) forms the Maxwell-Bloch equations for the 

closed (open) quantum system. 
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3. THE SOLUTION OF MAXWELL-BLOCH EQUATIONS 

In the EIT regime       and it is reasonable to adopt the perturbation method to 

solve Maxwell-Bloch equations. More precisely, one can treat the probe Rabi frequency 

as a perturbation and make a replacement       , where   is a small parameter. In 

addition, density matrix elements can be expanded as      ∑      
    

   , and only the 

first-order terms (linear in   ) can be retained. After this linearization procedure, one can 

find that the only relevant equations from the system of Eqs. 6–11 are 

  ̇          
     (    

 

 
   )     (30) 

  ̇          ( (     )  
 

 
   )      (31) 

for the closed system, while the system of Eqs. 12–26 reduces to 

  ̇          
     (    

 

 
   )     (32) 

  ̇          ( (     )  
 

 
             )      (33) 

for the open system, where we wrote        
   

 in order to simplify the notation. 

Moreover, we assume that the whole atomic system is initially prepared in the ground 

state    , thus    
   

   and    
   

        . Note that the Eqs. 30 and 32 have the 

same form, and that the decay rates     and     do not enter the relevant OBEs for the 

open system, and therefore do not affect the behavior of the open system in the first order 

in   . However, in the situations where the EIT condition is no longer satisfied, the use 

of the perturbation approach is no longer legitimate, and the higher orders in    need to 

be taken into account. In such cases, decay rates     and     enter OBEs regularly. 

Since the density matrix elements (together with the probe Rabi frequency) are time-

dependent quantities (they depend on the  -coordinate as well), the Fourier transform 

method is used in order to eliminate time derivatives from OBEs and obtain the system of 

algebraic equations which drastically simplifies the solution process. If we take the 

Fourier transform of both the Eqs. 30 and 31 with respect to time, we have 

     ̃     ̃     
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     ̃       ̃   ( (     )  
 

 
   )  ̃    (35) 

for the closed system, where   stands for the frequency of the particular Fourier 

component of the probe pulse, and  ̃       ,  ̃        and  ̃       represent the 

Fourier transforms of         ,          and        , respectively. Similarly, by taking 

the Fourier transform of Eqs. 32 and 33, we obtain 

     ̃     ̃     
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which hold for the open system. After eliminating  ̃   from both of the two systems of 

equations, we obtain the same expression: 

  ̃        ̃      
   

  
 ̃   (38) 

for both the closed and open quantum systems. The difference, however, lies in the 

expression for the function     , which, for the closed system, yields 
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while, for the open system, we have 
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    )(          
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  (40) 

This function is, in both cases, connected to the electric susceptibility with respect to the 

probe field, and thus to the polarization to the probe field, which enters the propagation 

equation, Eq. 29. We note that the main difference between            and           can 

be seen by looking at the terms which contain decay rates – for the open system, there are 

additional decay processes due to the existence of the levels     and    . 
In order to utilize the previously obtained expressions, one has to take the Fourier 

transform of Eq. 29 as well. Consequently, the equation for the Fourier amplitude of the 

probe field envelope  ̃       now yields 

 (
 

  
      )  ̃          (41) 

where 

        
 

 
         (42) 

and           
         . Eq. 41 can easily be solved for fixed  , so 

  ̃        ̃               (43) 

where  ̃       stands for the Fourier transform of the probe field envelope at the 

entrance into the atomic medium. Finally, we obtain the desired expression for the spatio-

temporal profile of the probe field envelope by taking the inverse Fourier transform:  
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)        )  

 

  

  (44) 

By using this expression, and by knowing the temporal profile of the input probe pulse 

(at    ), as well as the function      for both the closed (Eq. 39) and open system (Eq. 

40), we numerically compute the envelope of the probe pulse as a function of the 

propagation distance   and time   for the case of the closed and open atom-lasers quantum 

system. 
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4. RESULTS AND DISCUSSION 

In this paper, we numerically calculate the spatio-temporal profile of the probe pulse 

envelope during the propagation through the atomic medium,        , under the presence 

of the another, control cw laser field, with the help of Eq. 44. The two distinct cases are 

present – the closed system, where the probe and control field couple to the energy levels 

of the atomic medium forming the simple ladder configuration, and the open system, 

where the middle level is 3-fold degenerate, and two additional levels are not coupled via 

any of the laser fields (Stevanović et al., 2018). To carry out the numerical calculation, 

we first solve OBEs for both closed and open system, by using the Fourier transform 

method. We concentrate on the case where the full EIT regime (maximum transparency) 

is established, i.e. by setting           , and we choose the probe and control Rabi 

frequency by keeping in mind that the EIT condition       has to be satisfied. 

We choose to work in a system of units where    ,    ,     ,    ,        

and          , which implies that        . Moreover, all the Rabi frequencies and 

detunings are assumed to be given in the units of     , time is given in the units of 

        , while the unit of length is also     . For the open system, the following 

values of the decay rates are set:                    , while     and     are 

considered free parameters for both the closed and open systems. Furthermore, we 

assume that the input pulse has the Gaussian temporal shape with the spectral half-width 

(one half of the pulse spectral width at     of the field strength)  : 

              
            (45) 

where    is the time when the input pulse peak occurs and will be set to         

throughout the whole paper. The amplitude of the probe field strength     is connected to 

the amplitude of the probe Rabi frequency which is set to           , so      

                 . The Fourier transform of Eq. 45 gives 

  ̃       
√     

 
         (

 

  
)
 

  (46) 

which is also a Gaussian (with the additional phase factor           which does not 

affect the pulse profile), and which is necessary in order to solve the integral in Eq. 44. In 

the end, we assume that the longitudinal length (along the  -axis) of the sample is   
  , so one can calculate the probe pulse envelope at the exit of the atomic medium as 

well. We thoroughly investigate how   ,  ,    ,     and the middle-level degeneracy 

(differences between the closed and the open system) affect the spatio-temporal probe 

pulse profile due to coupling to the atomic medium and the control laser field. 

The absolute value of the probe field envelope at the exit of the atomic medium 

(   ) with respect to time is given in Fig. 2 for both the closed and open system, for 

several values of the control Rabi frequency                    and for three different 

values of the spectral half-width of the pulse:              . The following values for 

the remaining two decay rates are chosen:            . We can clearly see that the 

peak value of the output pulse is notably increased as    increases, regardless of the 

(non-) degeneracy or the value of  . Since the half-width of the EIT window (one half of 

the spectral distance between two absorption peaks) can be estimated as           , it 
is clear that by increasing the control Rabi frequency, the transparency window broadens, 
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which is followed by the reduction of the absorption at the center of the window (i.e. at 

      ). This causes reduced absorption for the cases of larger control Rabi frequency. 

Moreover, it is observed that the peak heights for the open system are always smaller 

than for the corresponding values for the closed one. This is because the bottom value of 

the EIT window is determined mostly by the decay rate from the highest to the middle 

level –     for the closed system, and by             for the open system, which is of 

course always larger. In fact, this enables us to replace the open system with the closed 

system, which has the modified value of the decay rate from state     to    :    
         

       . This introduction of the so-called effective decay rate enables the 

simplification of the degenerate atomic systems of interest. 

  

Fig. 2 The temporal profile of the output probe pulse envelope (at    ) for several values 

of the control Rabi frequency and for (a)      , (b)       and (c)      . 

Results for both the closed and open systems are presented. The following parameter 

values for decay rates are used in the computation:            . 

Fig. 2 also gives us information about the impact of the spectral half-width on the 

output pulse shape. Namely, we see that with the increase of  , the probe pulse has no 

longer the Gaussian shape for certain (smaller) values of   . As we pointed out 

previously, the width of the EIT window is proportional to   , so      for practically 

all the values of    in Fig. 2 (a), and all the frequency components that the pulse contains 

exit the medium, thus preserving the Gaussian shape of the pulse. The only absorption is 

the relatively small one due to the existence of the non-zero or non-negligible decay rates, 

particularly    . On the other hand, in Fig. 2 (b) for        the condition      is no 

longer satisfied, and those frequency components that are far apart from the carrier 

frequency are absorbed in the medium. As a consequence, this leads to the breakup of the 

pulse, which is more significant when the input spectral half-width is even larger (Fig. 2 

(c)). Here, the condition      is only satisfied for       , and the Gaussian shape 

preservation with almost no losses is notable only for this value of the control Rabi 

frequency. For other values of   , however, the pulse breaks up into one leading pulse 

and several other pulses with the variable size and shape. This can be explained as the 

fact that the nonlinear effects inside the medium are large enough to cause the different 
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spectral components of the pulse to attain different group velocities (third- or higher-

order effects with respect to  ). This behavior is the same for both the closed and open 

systems, except that the pulse breakup is not that significant for the open system due to 

larger absorption at the center of the transparency window. 

In Fig. 3, the spatio-temporal profile of the absolute value of the probe pulse is given 

for the closed and the open quantum system, and for three values of the spectral half-

width:              . The value of the control Rabi frequency is set to       , 

while again            . We can see that, for the closed system and for the smaller 

spectral half-width, as in Fig. 3 (a), the pulse propagates through the medium with certain 

losses (due to large    ), but without changing the Gaussian shape of the pulse. As   

increases, the pulse cannot pass through the EIT window as a whole and some frequency 

components remain absorbed inside the medium. This is particularly visible in Fig. 3 (c), 

with the initial pulse being split into one leading pulse and several following smaller 

pulses, thus significantly deforming the initial structure of the pulse. By looking at Fig. 3 

(d–f) which depict the pulse propagation through the degenerate atomic system, it can 

again be observed that the absorption of the pulse is more significant than in the case of 

the closed system, although the same conclusions can be made for the open system as far 

as the breakup of the pulse is concerned. 

  

Fig. 3 The absolute value of the probe pulse envelope with respect to distance and time, 

for the (a–c) closed system and (d–f) open system. The chosen values of the 

spectral half-width are (a, d)        , (b, e)         and (c, f)        , while 

       and            . 

We now concentrate on the influence of the decay rates     and     on the output 

probe pulse. The absolute value of the probe field envelope with respect to time is given 

in Fig. 4 for closed and open systems, for several values of     and    . The control Rabi 

frequency is          and the spectral half-width is      . In Fig. 4 (a), the value of 
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    is fixed to        , while the other decay coefficient takes the values:      
                . It is already mentioned that the value of     (           ) is mainly 

responsible for the value of the bottom of the EIT window for the closed (open) system. 

Therefore, the increase of these decay rates (here, we only increase     for the open 

system, keeping     and     constant) leads to the increase of the absorption at the 

bottom of the EIT window, and further to the decrease of the pulse peak height at the exit 

of the medium. Of course, this decrease is more notable for the open system due to the 

larger “effective” decay rate from the highest to the middle level(s). In all cases, a 

significant decrease in the peak height is observed. This is due to the fact that the values 

of the decay rates and    are of the same order of magnitude. It can be shown that, in 

order to obtain even more efficient transmission, one has to increase the value of the 

control Rabi frequency at least to the one order of magnitude higher value than those of 

    and    . Fortunately, this is feasible for a huge number of atom-lasers systems used 

in the EIT-related experiments. 

 

Fig. 4 The temporal profile of the output probe pulse envelope (a) for         and 

several values of     and (b) for         and several values of    . Results for 

both the closed and open systems are presented. The following parameter values 

are used:        and        . 

In Fig. 4 (b), the value of     is fixed to        , while     is allowed to change: 

                     . All the other parameters have the same values as in Fig. 4 (a). 

We notice that there is no significant change in the output pulse shape with respect to     

– even though there are some slight changes in the pulse shape, the impact of the value of 

    on the transmission of the pulse is clearly negligible. More precisely, even though the 

leading pulse has a slightly larger peak value for a certain value of     (for instance, for 

        compared to        ), the peak values of the pulses which follow the leading 

one will be comparably smaller. On the basis of this discussion, as well as of the one 

from the previous text, we can conclude that the influence of the decay rate     on the 

probe pulse propagation is far more expressed than the one of the coefficient    . 
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Until now, we focused on the temporal shape of the probe pulse with respect to 

several parameters. However, it is important to investigate how specific quantities, 

closely related to the pulse, depend on the same parameters. To do this, we first define 

the pulse energy at the entrance and at the exit of the atomic medium,     and     , 

respectively, mean value      and standard deviation for the intensity of the output pulse 

     (proportional to the temporal width of the output pulse) using the following formulas 

(Nielsen et al., 2007): 

     ∫ |        |
 
   

 

  

  (47) 

      ∫ |        |
 
   

 

  

  (48) 

      
 

    
 ∫   |        |

 
   

 

  

          (49) 

      √            (50) 

We are interested in the value of the group index          , which is obtained with the 

help of the following formula for the group velocity of the pulse: 

      
 

        
  (51) 

The other parameter of interest is the relative temporal width of the output pulse,       , 

where            is the standard deviation for the intensity of the input pulse. Since also 

                 we have                , so the relative temporal width instantly 

gives the relative spectral width of the output pulse. In the end, we define the transmission 

coefficient as             . We study the behavior of   ,        and   with respect to 

both the control Rabi frequency    and the input pulse spectral half-width  . 

In Fig. 5, all the relevant parameters (group index, relative temporal pulse width, and 

transmission coefficient) are given with respect to    (for fixed        ) and   (for 

fixed       ), for the closed as well as for the open system. All the graphs are obtained 

by taking            . By looking at Fig. 5 (a) for both the closed and open system, 

it can be seen that the value of    does not change monotonically with the increase of    

– at first, as the control Rabi frequency increases,    decreases, which is followed by the 

increase of    with the further increase of   , after which the group index asymptotically 

tends to unity (horizontal asymptote described by the black dashed line). Therefore, in 

both cases, the minimum of the group index occurs, and the values of these two minima 

are smaller than unity for this particular set of parameters. However, the range of values 

of the control Rabi frequency     for which      is larger for the case of the open 

system. This means that the fast light region is accessible with a larger range of    for the 

open system (              ,          ) compared to the closed one (   
           ,          ). Outside of these regions, the regime of slow light is 

achieved. The similar conclusion can be made by looking at Fig. 5 (d), where the 

dependence of    on   is studied – for this particular choice of parameters, one can achieve 

the fast light regime only for a small region of initial pulse half-widths for the open system, 
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but not for the closed one. In both cases, as in Fig. 5 (a), there is a horizontal asymptote 

which is equal to unity, and the group velocity of light is equal to the vacuum speed of 

light for large values of both    and  . 

 

Fig. 5 The dependence of the (a, d) group index, (b, e) relative temporal pulse width and 

(c, f) transmission coefficient on the (a–c) control field Rabi frequency (with 

       ) and (d–f) spectral half-width of the input pulse (with       ). The 

results are obtained by taking            . 

As far as the relative temporal output pulse width is concerned, we can see its 

dependence on    in Fig. 5 (b) and on   in Fig. 5 (e). It is observed that         is large 

for smaller values of   , while for large values of the control Rabi frequency it tends to 

unity (black dotted line). This is reasonable since the EIT window is very narrow when 

   is small (to be more precise, there would be no EIT window at all due to the violation 

of the EIT condition      , but one absorption peak at     , and almost all the 

frequency components will be absorbed). Therefore, many frequency components are 

absorbed by the atomic medium, so the output pulse is narrowed in frequency, i.e. 

temporally broadened. The same explanation can be used for the behavior of        in 

Fig. 5 (e) for large   – the output pulse is spectrally narrowed due to the absorption of 

many frequency components of the pulse, which leads to an increase in the duration of 

the pulse. On the other hand, when    is large enough (Fig. 5 (b)),      is satisfied, so 

no frequency components get absorbed and the pulse propagates without changing its 

shape and width. The same condition is satisfied for small values of   in Fig. 5 (e), 

which is why there exists a region where the relative pulse width is unity as well. In 

addition, we note the existence of the minimum in Fig. 5 (b) for the open system, with the 

value         . Therefore, there is a range of values of the control Rabi frequency for 

which the temporal narrowing of the pulse can be achieved (              ), and it is 

connected to the fast light regime (see Fig. 5 (a)). This is, however, possible only for the 

open quantum system. 

In the end, let us focus on the dependence of the transmission coefficient on    (Fig. 

5 (c)) and   (Fig. 5 (f)). As one should expect, since no EIT has been achieved for the 
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small values of the control Rabi frequency, the transmission is almost equal to zero. By 

the further increase in   , when the EIT window is established, the transmission coefficient 

increases. Since the width of the transparency window is linearly dependent on   , almost 

all the pulse exits the medium when the value of this width is large enough. Since the 

bottom of the EIT window is determined by the value of     and this value is of the same 

order of magnitude as   , absorption losses cannot be neglected. Only with the further 

increase of    (      ) one can reduce losses (the value of the bottom of the EIT 

window decreases) causing the transmission coefficient to be nearly equal to unity. 

Moreover, this value of      is achieved “faster” for the closed system – for the open 

system, one has to increase    even more compared to the closed system in order to obtain 

the maximum transmission. As far as the dependence of   on the input spectral half-width 

is concerned, it is clear that the transmission is maximal when   is small and all the pulse 

transmits through the medium. As   increases, however, the transmission decreases due to 

the absorption of various spectral components and saturates for large values of  . This can 

be explained in the following way: no matter how large   is chosen, several spectral 

components of the pulse near the carrier frequency will always be transmitted through the 

medium, and there will be no change of the energy of the output pulse. 

5. CONCLUSION 

In this paper, we investigated the propagation of the weak probe pulse through the 

atomic medium in the presence of the additional, strong control cw laser field. The two 

lasers and the medium couple to each other and form the ladder coupling scheme. We 

focused on the two cases: the closed system, which represents the standard 3-level ladder 

scheme, and the open system, where the middle level is 3-fold degenerate. In order to 

calculate the spatio-temporal profile of the pulse envelope, we used the formalism of 

Maxwell-Bloch equations, with the help of the Fourier transform method. We examined 

the influence of the middle-level degeneracy on the propagation of the probe pulse and 

concluded that one can replace the open system with the appropriate closed system with 

the effective value of the decay rate from the highest to the middle level. Since the decay 

rates from the highest to the sublevels of the middle level of the open system add up, the 

pulse gets absorbed more quickly if the medium is the system with degenerate levels 

compared to the non-degenerate case. Moreover, we studied the impact of the control 

field Rabi frequency and the spectral half-width of the input pulse, as well as the decay 

rates, on the shape of the output pulse. We found that the ratio between the control Rabi 

frequency and spectral half-width is important since it determines what spectral 

components of the pulse can be transmitted through the transparency window. As a 

consequence, the output pulse can either retain the initial Gaussian temporal shape if the 

spectral half-width is much smaller than   , or can break up into one leading and several 

smaller pulses which propagate with different group velocities for the case when   is 

similar or larger than   . We also found that among the two decay rates we focused our 

attention,     has a larger impact on the output pulse profile compared to    , since it is 

this value that is responsible for the value of the bottom of the transparency window, 

determining the absorption of the pulse. In the end, we calculated the values of the group 

index, relative pulse width and transmission coefficient with respect to both    and  , 

for both the closed and open system. It is observed that both the control Rabi frequency 
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and spectral half-width strongly affect these values. For instance, by changing these 

parameters, one can reduce or increase the group velocity of light and switch between the 

slow- or fast-light regime. There is a range of parameters for which the realization of fast light 

is possible, while the other parameter values correspond to slow light, and this range is larger 

for the open system. In fact, fast light in the closed system might not occur at all regardless of 

the values of the considered parameters, even if there exists a region where fast light in the 

open system is achievable. We believe that this research could help the study of these types of 

quantum systems, which is of great interest in order to further develop the fields of quantum 

optics, optical telecommunications and quantum information processing. 
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PROSTIRANJE SPORE I BRZE SVETLOSTI  

KROZ ATOMSKE SREDINE SA DEGENERISANIM NIVOIMA  

U LESTVIČASTOJ KONFIGURACIJI 

Proučava se prostiranje sondirajućeg pulsa slabog intenziteta kroz atomsku sredinu, u 

prisustvu kontrolnog laserskog polja jakog intenziteta, i u uslovima ostvarene elektromagnetno 

indukovane transparentnosti (EIT). Pomenuta polja su spregnuta sa sredinom i formiraju 

lestvičastu konfiguraciju sa tri nivoa. Razmatraju se dva slučaja: nedegenerisani, zatvoren sistem, 

kao i otvoren sistem u kome je središnji energijski nivo trostruko degenerisan, a dodatni nivoi 

sprežu se sa ostalim nivoima samo preko spontane emisije. Prostorno-vremenski profil envelope 

sondirajućeg pulsa dobijen je korišćenjem formalizma Maksvel-Blohovih jednačina, uz pomoć 

metoda Furijeove transformacije. Proučavan je uticaj Rabijeve frekvencije kontrolnog polja, 

spektralne poluširine inicijalnog pulsa, kao i koeficijenata raspada na prostiranje sondirajućeg 

pulsa. Računato je i nekoliko važnih parametara koji se tiču sondirajućeg pulsa. Pokazano je da je 

moguće kontrolisati grupnu brzinu svetlosti tako da se, promenom kontrolne Rabijeve frekvencije i 

spektralne poluširine pulsa, može vršiti prelazak iz spore u brzu svetlost i obrnuto. Takođe, 

razmatrana je i mogućnost zamene otvorenog sa efektivnim zatvorenim sistemom. 

Ključne reči: Elektromagnetno indukovana transparentnost, spora svetlost, brza svetlost, 

degeneracija energijskih nivoa, zatvoren sistem, otvoren sistem 


