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NEUTRINOS AND THE STRUCTURE OF SPACE-TIME

Argyris Nicolaidis

Abstract. The phenomenon of neutrino oscillations is studied usually as a mixing
between the flavor neutrinos and the neutrinos having a definite mass. The mixing
angles and the mass eigenvalues are treated independently in order to accommodate
the experimental data. We suggest that neutrino oscillations are connected to the
structure of spacetime. We expand on a recently proposed model, where two “mirror”
branes coexist. One brane hosts left-handed particles (our brane), while the other brane
hosts right-handed particles. Majorana-type couplings mixes neutrinos in an individual
brane, while Dirac-type couplings mixes neutrinos across the brares. We first focus our
attention in a single brane. The mass matrix, determined by the Majorana mass, leads
to mass eigenstates and further to mixing angles identical to the mixing angles proposed
by the tri-bimaximal mixing. When we include the Dirac-type coupling, connecting the
two branes, we obtain a definite prediction for the transition to a sterile neutrino (right-
handed neutrino). With mL (mR) the Majorana mass for the left (right) brane, we are
able to explain the solar and the atmospheric neutrino data with mL = 2mR and
mR = 10−2 eV.

1. Introduction

Neutrinos are very numerous in the universe, trailing just behind the most domi-
nant particles, the photons. Since they interact only through the weak interactions,
detecting them is a most difficult task. The energy spectrum of neutrinos ranges
from the few MeV of solar neutrinos to the high PeV energies of astrophysical neu-
trinos. The neutrinos traverse unhindered huge distance and they always point
back to their sources. This last fact is the ground for the emergence of a new field,
“neutrino astronomy”.

Neutrino oscillations is a purely quantum mechanical phenomenon, where a
neutrino of a given flavor is transformed to a neutrino of a different flavor. The study
of neutrino oscillations reveals essential parameters, like the neutrino masses and
the neutrino mixing angles. Understanding the values of these parameters would
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imply that we have a handle on the underlying neutrino physics. The neutrinos
act also like messengers, conveying important information about the original source
and the medium traversed.

In the present work we indicate that neutrinos may provide information
about the structure of space-time. The starting point is to view spinors as the
building blocks of space-time, expanding on ideas first proposed by Cartan and
Penrose. The ensuing geometry , two “mirror” branes, is best studied by neutrinos.
Let us remind the thrust of the argument.

It has been suggested that the relational logic of C. S. Peirce (or equivalently
category theory) may serve as the foundation for quantum mechanics [1]. The
algebra of logical relations leads to discrete geometrical patterns [1], thus reviving

Wheeler’s pioneering idea of “pregeometry”. Wheeler suggested that geometry
is preceded by pregeometry, which is based on a calculus of logical propositions
[2, 3]. A relation, considered as a logical proposition receiving a “yes” or a “no”
answer, resembles to a spinor, which under measurement is revealed as “spin up”
or “spin down” [1, 4]. We may view then the spinor as the building block of our
logical construction and a spinor network would be equivalent to a pregeometry.

The profound connection between spinors and geometry was established a
hundred years ago by Cartan, who introduced spinors as linear representation of
the rotation group [5]. Penrose used spinor as the building block of discrete space-
time and as a powerful tool to study physics issues [6]. A single spinor gives rise
to the Riemann-Bloch sphere, which is topologically equivalent to the null cone of
Minkowski spacetime [6]. It is quite natural then to wonder what kind of geometry
we obtain when we entangle two spinors. We carried out this work in reference [7].

There are two ways to couple two spinors. The first way relies on Majorana’s
recipe to create a spinor [8]. Given a left-handed spinor |ψL⟩, we may construct a
right-handed spinor |χR⟩ by

|χR⟩ = σ2 |ψL⟩∗(1.1)

Starting with two independent left-handed Weyl spinors, we may induce a cou-
pling between them by establishing a four-component Majorana spinor

|ΨM ⟩ =
(

|χL⟩
σ2 |ψL⟩∗

)
(1.2)

Defining Xi = ⟨ΨM |γi| ΨM ⟩ (i = 0, 1, 2, 3) we find that Xi is not a null vector [7]

X2
1 +X2

2 +X2
3 −X2

0 =M2
M(1.3)

with

X4 = i ⟨ΨM | ΨM ⟩
X5 = ⟨ΨM |γ5| ΨM ⟩

M2
M = −

(
X2

4 +X2
5

)
(1.4)
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Thus among two left-handed Weyl spinors (or two right-handed Weyl spinors),
the Majorana’s coupling induces a mass term. Notice that usually a Majorana
spinor represents a particle which is itself an antiparticle and it is reduced to a
two-component spinor. In our case we managed to connect two distinct left-handed
Weyl spinors to a four component spinor.

The Dirac coupling involves a left-handed Weyl spinor and a right-handed
Weyl spinor. Writing

|ΨD⟩ =
(

|χL⟩
|ψR⟩

)
(1.5)

we obtain
X2

1 +X2
2 +X2

3 −X2
0 = −M2

D(1.6)

with
M2
D =

(
X2

4 +X2
5

)
(1.7)

Let us define T = X0, t = MD. The Dirac entanglement, equ.(1.6), takes the
form of a space-like hyperboloid

T 2 −
3∑
i=1

X2
i = t2(1.8)

A comparison with the null cone geometry, indicates that quantum entanglement,
specified and quantified by t, generates an extra dimension. The distance along
this extra dimension indicates how far we are from the null cone. Furthermore
our space-time acquires a double-sheet structure, reminding the ekpyrotic model
where two branes coexist [9, 10, 11]. There is though a distinct difference. In our
model, by construction, one brane hosts left-handed particles (our brane), while the
other brane hosts right-handed particles. We should indicate that we use the term
“brane” in a broad sense. Usually brane models and the ensuing phenomenology are
studied within string theory and general relativity [12, 13, 14]. In the present case
the “mirror” brane structure is obtained by making appeal to the Cartan-Penrose
connection of spinors to geometry. Notice that “mirror” brane models have been
also proposed elsewhere [15].

The conventional way to restore left-right symmetry is to introduce an extra
SU(2)R gauge group in the energy desert above the scale of the standard SU(2)L
interactions. The right-handed gauge bosons are more massive compared to the left-
handed gauge bosons, leading to parity violation at low energies [16, 17]. Within our
approach the left-right symmetry is achieved with the extra dimension hosting two
“mirror” branes, a left-handed brane and a right-handed brane. The most promi-
nent candidate for mediation between the two branes is the neutrino particle. The
left-handed neutrino, an essential ingredient of the standard model, resides in our
brane, while its counterpart, the right-handed neutrino, resides in the other brane.
Within our approach neutrino oscillations acquire a novel character. Majorana-type
coupling mixes the left-handed flavor neutrinos residing in our brane, as well as the
right-handed neutrinos residing in the other brane. Dirac-type coupling connects
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the left-handed neutrinos of our brane to the right-handed neutrinos of the other
brane. From our point of view, right-handed neutrinos appear as sterile neutri-
nos, and the transition flavor neutrino - sterile neutrino - flavor neutrino amounts
to a swapping between the two branes. Let us study first the mixing among the
left-handed neutrinos, or focus our attention into our brane.

2. Single brane

In our model Majorana mass couplings connect distinct left-handed Weyl spinors
(there is no self-coupling). We assume a “democratic principle” attributing the same
value to all Majorana mass couplings. Then the mass matrix for the left-handed
neutrinos will take the form

M =

 0 m m
m 0 m
m m 0

(2.1)

The eigenvalues of M , involving a double root, are

λ1 = λ3 = −m λ2 = 2m(2.2)

The corresponding eigenvectors are

NT
1 =

1√
6

(
2, −1, −1

)
NT

2 =
1√
3

(
1, 1, 1

)
(2.3)

NT
3 =

1√
2

(
0, 1, −1

)
Expressing the flavor left-handed neutrinos in terms of the mass eigenstates we write

|νfi⟩ =
∑
j

cij |Nj⟩(2.4)

with νf1 , νf2 , νf3 denoting respectively νeL , νµL
, ντL .

Defining (U)ij = cij we find that the mixing matrix U is

U =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

(2.5)

This type of mixing defines the celebrated tri-bimaximal mixing (TB mixing)
[18-21]. We notice that the TB mixing has been proposed in order to accomodate
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the experimental data, while in our case emerges as the outcome of a Majorana-type
coupling among the left-handed neutrinos.

Let us consider an initial flavor νeL beam. The transitions to other flavors
are given by

P (νe → νµ) = P (νe → ντ ) =
4

9
sin2

(
3

4

m2

~E
t

)
(2.6)

Also

P (νe → νe) =
1

9

[
9− 8sin2

(
3

4

m2

~E
t

)]
(2.7)

The oscillations depend upon a single mass scale and clearly cannot reproduce the
available data. The introduction of the right-handed brane allows us to have access
to two more scales, the Majorana mass coupling in the right-handed brane and
the Dirac mass coupling among the branes. We move then to the case of the two
“mirror” branes.

3. Mirror branes

On general grounds we expect the Majorana mass coupling in the right-handed
brane to be of the same order of magnitude with the corresponding parameter in
the left-handed brane. For general purposes we denote them by mL, mR, with the
obvious correspondence. Each single left-handed neutrino, residing in our brane, is
connected to all the right-handed neutrinos, residing in the other brane, by the same
universal Dirac mass coupling µ. Then the mass matrix involving the 6 neutrino
states (3 left-handed plus 3 right-handed) will have the form

M =

(
ML M+

M+ MR

)
.(3.1)

ML (MR) is a mass matrix identical toM , equ. (2.1), with m replaced by mL (mR).
M+ involves the mass terms connecting the two branes and is given by

M+ =

 µ µ µ
µ µ µ
µ µ µ

(3.2)

The eigenvalues, involving two double roots, are

λ1 = λ3 = −mL

λ4 = λ6 = −mR

λ2 = (mL +mR) +
[
(mL −mR)

2
+ 9µ2

] 1
2

(3.3)

λ5 = (mL +mR)−
[
(mL −mR)

2
+ 9µ2

] 1
2
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Let us define

d =
[
(mL −mR)

2
+ 9µ2

] 1
2

(3.4)

δ± = d± (mL −mR)

cosϕ =

(
δ+
2d

) 1
2

sinϕ =

(
δ−
2d

) 1
2

(3.5)

The corresponding eigenvectors are

NT
1 =

1√
6

(
2, −1, −1, 0, 0, 0

)
NT

2 =
1√
3

(
cosϕ, cosϕ, cosϕ, sinϕ, sinϕ, sinϕ

)
NT

3 =
1√
2

(
0, 1, −1, 0, 0, 0

)
NT

4 =
1√
6

(
0, 0, 0, 1, −2, 1

)
(3.6)

NT
5 =

1√
3

(
sinϕ, sinϕ, sinϕ, − cosϕ, − cosϕ, − cosϕ

)
NT

6 =
1√
2

(
0, 0, 0, −1, 0, 1

)
The similarities and the differences with the case of a single brane, equ. (2.3), are

apparent. N1, N3 (N4, N6) involve mixing within the individual left (right) brane.
N2 and N5 connect the two branes. For mL = mR, ϕ = π

4 and the two branes are
equally present in the mixing phenomenon. For small Dirac coupling compared to
the Majorana couplings we obtain ϕ ≃ 0.

The mixing matrix connecting the flavor eigenstates (left-handed and right-
handed) to the six eigenvectors takes the form

U =



√
2
3

1√
3
cosϕ 0 0 1√

3
sinϕ 0

− 1√
6

1√
3
cosϕ 1√

2
0 1√

3
sinϕ 0

− 1√
6

1√
3
cosϕ − 1√

2
0 1√

3
sinϕ 0

0 1√
3
sinϕ 0 1√

6
− 1√

3
cosϕ − 1√

2

0 1√
3
sinϕ 0 −

√
2
3 − 1√

3
cosϕ 0

0 1√
3
sinϕ 0 1√

6
− 1√

3
cosϕ 1√

2


(3.7)

Again for ϕ = 0 the upper left part of the matrix gives the previous result, equ.
(2.5), for the single brane.

Imagine that at t = 0 we start with a pure νeL beam. The probability to
find later another flavor is given by

P (νeL → νµL) = P (νeL → ντL)
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=
1

9

{
1 + cos4 ϕ+ sin4 ϕ+ 2

[
cos2 ϕ sin2 ϕ cos

(ω+ − ω−) t

2~E
− cos2 ϕ cos

ω+t

2~E
− sin2 ϕ cos

ω−t

2~E

]}
where

ω+ = m2
L + 2m2

R + 9µ2 + 2d (mR +mL)

ω− = m2
L + 2m2

R + 9µ2 − 2d (mR +mL)(3.8)

ω+ − ω− = 4d (mR +mL)

The transition to a generic sterile neutrino (an incoherent sum of all right-handed
neutrinos) is given by

P (νe → νs) =
1

9
sin 2ϕ sin2

(
1

4~E
(ω+ − ω−) t

)
(3.9)

Notice that for the transition of the νµL
we find

P (νµL → νeL) = P (νµL → ντL) = P (νeL → νµL)(3.10)

We may recall the neutrino oscillation data [22]. Solar and atmospheric
neutrino oscillations define two distinct mass scales

∆m2
s ≃ 5 ∗ 10−5eV 2 ∆m2

a ≃ 2 ∗ 10−3eV 2(3.11)

A neutrino oscillation experiment defines a specific value for the parameter t
E (the

distance traveled by the neutrino over its energy). Large values of t
E allow to explore

small values of ∆m2, or correspondingly small ω. Solar neutrinos correspond to low
energy neutrinos covering huge distance, therefore their oscillation is determined by
ω−. Atmospheric neutrinos involve higher energies and smaller distances and their
oscillation is controlled by ω+. Accordingly we assign

ω− ≃ ∆m2
s

ω+ ≃ ∆m2
a(3.12)

There is a conflicting evidence for the existence of a sterile neutrino [23]. At any
rate the amplitude for a transition to a sterile neutrino is expected to be small and
correspondingly sinϕ, see equ. (3.9), and the Dirac coupling µ are small. Adopting
the hierarchy (mL −mR) > µ we find that the values

mL ≃ 2mR mR ≃ 10−2eV(3.13)

reproduce the observed scales, equ. (3.12). The precise smallness of µ will fix the
magnitude of sinϕ and therefore the probability to a sterile neutrino oscillation.
Notice however that within our scheme the mass scale for the transition to a sterile
neutrino is at a sub-eV scale (3 ∗ 10−2 eV), rather far from the value suggested by
the LSND experiment.
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4. Conclusion

The conventional approach to the phenomenon of neutrino oscillations is to
consider it as a manifestation of a mixing between the flavor eigenstates and the
mass eigenstates. The mixing angles and the masses of the mass eigenstates are
treated independently and are determined largely by the experimental data. There
is also an effort to accommodate the available data by making appeal to discrete
groups [24, 25, 26]. We offer an alternative approach, by proposing that neutrino
oscillations are connected to the structure of space-time. Space-time hosts two
branes, one brane where the left-handed particles reside (our brane) and another
brane where the right-handed particles reside. The long sought left-right symmetry
is achieved through the geometry of space-time. Majorana-type couplings connect
the neutrinos living in an individual brane, while Dirac-type couplings connect
neutrinos across the branes. We managed to treat at the same time both the
masses involved and the mixing angles, by making appeal to first principles. Is this
success fortuitous? We consider that even if the theoretical construction is not fully
accepted, its phenomenological implication of the existence of two mirror branes is
highly interesting. But clearly further indications are needed.

Finally we would like to remind the experimental evidence for a small non-
vanishing value for the matrix element c13 [27-30]. It seems that this small value
indicates a hidden substructure and work along this line is in progress.
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