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SUPERMASSIVE BLACK HOLE AT THE GALACTIC CENTER ∗

Alexander F. Zakharov

Abstract. We derive an analytical expression of a shadow size as a function of a charge
in the Reissner – Nordström (RN) metric. Using the derived expression we consider
shadows for negative tidal charges and charges corresponding to naked singularities
q = Q2/M2 > 1, where Q and M are black hole charge and mass, respectively. An
introduction of a negative tidal charge q can describes black hole solutions in theories
with extra dimensions, so following the approach we consider an opportunity to extend
RN metric to negative Q2, while for the standard RN metric Q2 is always non-negative.
We found that for q > 9/8 black hole shadows disappear. Significant tidal charges q =
−6.4 are not consistent with observations of a minimal spot size at the Galactic Center
observed in mm-band, moreover, these observations demonstrate that in comparison
with the Schwarzschild black hole a Reissner – Nordström black hole with a significant
charge q ≈ 1 provides a better fit of recent observational data for the black hole at the
Galactic Center.

1. Introduction

Theories with extra dimensions admit astrophysical objects (supermassive black
holes in particular) which are rather different from standard ones. Tests have been
proposed when it would be possible to discover signatures of extra dimensions in
supermassive black holes since the gravitational field may be different from the
standard one in the GR approach. So, gravitational lensing features are different
for alternative gravity theories with extra dimensions and general relativity.

Recently, Bin-Nun [1] discussed an opportunity that the black hole at the Galac-
tic Center is described by the tidal Reissner– Nordström metric which may be ad-
mitted by the Randall–Sundrum II braneworld scenario [2]. Bin-Nun suggested an
opportunity of evaluating the black hole metric analyzing (retro-)lensing of bright
stars around the black hole in the Galactic Center. Doeleman et al. evaluated a size
of the smallest spot for the black hole at the Galactic Center with VLBI technique

Received June 20, 2014.
UDC 524.882

∗The author was supported in part by the NSF (HRD-0833184) and NASA (NNX09AV07A).

201

Mile
Rectangle



202 ALEXANDER F. ZAKHAROV

in mm-band [3]. Theoretical studies showed that the size of the smallest spot near
a black hole practically coincides with shadow size because the spot is the envelope
of the shadow [4, 5, 6]. Measurements of the shadow size around the black hole
may help to evaluate parameters of black hole metric [5, 6]. We derive an ana-
lytic expression for the black hole shadow size as a function of the tidal charge for
the Reissner– Nordström metric. We conclude that observational data concerning
shadow size measurements are not consistent with significant negative charges, in
particular, the significant tidal charge q = Q/M2 = −6.4 discussed [1], where the
author used a little bit different notations, namely q′ = q/4, is practically ruled
out with a very high probability (the tidal charge is roughly speaking is far beyond
9σ confidence level). We also show a smaller shadow sizes in respect to estimates
obtained with the Schwarzschild black hole model can be explained with the Reiss-
ner – Nordström metric with a significant charge. It was found a critical q value
for shadow existence, namely for q ≤ 9/8, Reissner – Nordström black holes have
shadows while for q > 9/8 the shadows do not exist.

Now there are two basic observational techniques to investigate a gravitational
potential at the Galactic Center, namely, a) monitoring the orbits of bright stars
near the Galactic Center to reconstruct a gravitational potential [7] (see also a
discussion about an opportunity to evaluate black hole dark matter parameters in
[8] and an opportunity to constrain some class of alternative theory of gravity [9]); b)
in mm-band with VLBI-technique measuring a size and a shape of shadows around
black hole giving an alternative possibility to evaluate black hole parameters. The
formation of retro-lensing images (also known as mirage, shadows or ”faces” in the
literature) due to the strong gravitational field effects nearby black holes has been
investigated by several authors [5, 6].

As J. A. Wheeler coined ”Black holes have no hair”: it means that a black hole
is characterized by only three parameters (”hairs”), its mass M , angular momen-
tum J and charge Q (see, e.g. [10]). Therefore, in principle, charged black holes
can be formed, although astrophysical conditions that lead to their formation may
look rather problematic. Nevertheless, one could not claim that their existence is
forbidden by theoretical or observational arguments. Moreover, we will show below
that observations give a hint about an existence of a significant charge, but its origin
is not clear at the moment.

2. Basic Equations

The expression for the Reissner - Nordström metric in natural units (G = c = 1)
has the form

(2.1) ds2 = −
(
1− 2M

r
+

Q2

r2

)
dt2+

(
1− 2M

r
+

Q2

r2

)−1

dr2+r2(dθ2+sin2θdϕ2).

Applying the Hamilton-Jacobi method to the problem of geodesics in the Reissner -
Nordström metric, the motion of a test particle in the r-coordinate can be described



Supermassive Black Hole at the Galactic Center 203

by following equation (see, for example, [10])

r4(dr/dλ)2 = R(r),(2.2)

where

R(r) = P 2(r)−∆(µ2r2 + L2),

P (r) = Er2 − eQr,(2.3)

∆ = r2 − 2Mr +Q2.

Here, the constants µ,E,L and e are associated with the particle, i.e. µ is its mass,
E is energy at infinity, L is its angular momentum at infinity and e is the particle’s
charge. We shall consider the motion of uncharged particles (e = 0) below. In this
case, the expression for the polynomial R(r) takes the form

R(r) = (E2 − µ2)r4 + 2Mµr3 − (Q2µ2 + L2)r2 + 2ML2r −Q2L2.(2.4)

Depending on the multiplicities of the roots of the polynomial R(r), we can have
three types of motion in the r - coordinate [11]. In particular, by defining r+ =
1 +

√
1−Q2, we have: (1) if the polynomial R(r) has no roots for r ≥ r+, a test

particle is captured by the black hole; (2) if R(r) has roots and (∂R/∂r)(rmax) ̸= 0
with rmax > r+ (rmax is the maximal root), a particle is scattered after approaching
the black hole; (3) if R(r) has a root and R(rmax) = (∂R/∂r)(rmax) = 0, the
particle now takes an infinite proper time to approach the surface r = const. If we
are considering a photon (µ = 0), its motion in the r-coordinate depends on the
root multiplicity of the polynomial R̂(r̂)

R̂(r̂) = R(r)/(M4E2) = r̂4 − ξ2r̂2 + 2ξ2r̂ − Q̂2ξ2.(2.5)

where r̂ = r/M, ξ = L/(Me) and Q̂ = Q/M. One could see from Eq. (2.5) and
Eqs. (2.3) as well that the black hole charge may influence substantially the photon
motion at small radii (r ≈ 1), while the charge effect is almost negligible at large
radial coordinates of photon trajectories (r >> 1). In the last case we should keep
in mind that the charge may cause only small corrections on photon motion.

3. Derivation of shadow size as a function of charge

Let us consider the problem of the capture cross section of a photon by a charged
black hole. It is clear that the critical value of the impact parameter for a photon to
be captured by a Reissner - Nordström black hole depends on the multiplicity root
condition of the polynomial R(r). This requirement is equivalent to the vanishing
discriminant condition [12]. To find the critical value of impact parameter for
Schwarzschild and RN metrics the condition has been used for corresponding cubic
and quartic equations [13, 14, 15]. In particular, it was shown that for these cases



204 ALEXANDER F. ZAKHAROV

the vanishing discriminant condition approach is more powerful in comparison with
the procedure excluding rmax from the following system

R(rmax) = 0,
∂R

∂r
(rmax) = 0,(3.1)

as it was done, for example, by Chandrasekhar [16] to solve similar problems, be-
cause rmax is automatically excluded in the condition for vanishing discriminant.
Introducing the notation ξ2 = l,Q2 = q, we obtain

R(r) = r4 − lr2 + 2lr − ql.(3.2)

We remind basic algebraic definitions and relations. If we consider an arbitrary
polynomial f(X) with degree n

f(X) = Xn + a1X
n−1 + ...+ an−1X + an,(3.3)

the elementary symmetric polynomials sk have the following form, where X1, ...Xn

are roots of the polynomial f(X) [12]

sk(X1, ...Xn) =
∑

16i1<i2<...<ik6n

Xi1Xi2 ...Xik ,(3.4)

where k = 1, 2, ..., n. The symmetrical k-power sum polynomial pk have the follow-
ing expression [12]

pk(X1, ...Xn) = Xk
1 +Xk

2 + ...+Xn
k , for k ≥ 0.(3.5)

To express pk through sk one can use Newton’s equations [12]

pk − pk−1s1 + pk−2s2 + ...+ (−1)k−1p1sk−1 + (−1)kksk = 0, for 1 6 k 6 n;

pk − pk−1s1 + pk−2s2 + ...+ (−1)n−1pk−n+1sn−1 + (−1)npk−nsn = 0, for k > n.

We introduce the following polynomial

∆n(X1, ...Xn) =
∏

16i<j6n

(Xi −Xj),(3.6)

which can be represented as the Vandermonde determinant

∆n(X1, ...Xn) =

∣∣∣∣∣∣∣∣
1 1 ... 1
X1 X2 ... Xn

... ... ... ...
Xn−1

1 Xn−1
2 ... Xn−1

n

∣∣∣∣∣∣∣∣ .(3.7)

According to the discriminant Dis definition we have the Dis(s1, ..., sn) polynomial

Dis(s1, ..., sn) = ∆2
n(X1, ...Xn) =

∏
16i<j6n

(Xi −Xj)
2,(3.8)
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one can find [12]

Dis(s1, ...sn) =

∣∣∣∣∣∣∣∣∣∣
n p1 p2 ... pn−1

p1 p2 p3 ... pn
p2 p3 p4 ... pn+1

... ... ... ... ...
pn−1 pn pn+1 ... p2n−2

∣∣∣∣∣∣∣∣∣∣
.(3.9)

Clearly, that the vanishing discriminant condition is equivalent to an existence of
multiple roots among roots X1, ...Xn. We apply this technique for the quartic
polynomial R(r) in Eq. (3.2). So, the symmetric k-power polynomials for n = 4
have the form

pk = Xk
1 +Xk

2 +Xk
3 +Xk

4 , k ≥ 0.(3.10)

The symmetric elementary polynomials for n = 4 have the form

s1 = X1 +X2 +X3 +X4,

s2 = X1X2 +X1X3 +X1X4 +X2X3 +X2X4 +X3X4,

s3 = X1X2X3 +X2X3X4 +X2X3X4,(3.11)

s4 = X1X2X3X4.

We calculate the discriminant of the family X1, X2, X3, X4

Dis(s1, s2, s3, s4) =

∣∣∣∣∣∣∣∣
1 1 1 1
X1 X2 X3 X4

X2
1 X2

2 X2
3 X2

4

X3
1 X3

2 X3
3 X3

4

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
4 p1 p2 p3
p1 p2 p3 p4
p2 p3 p4 p5
p3 p4 p5 p6

∣∣∣∣∣∣∣∣ .
Expressing the polynomials pk(1 ≤ k ≤ 6) in terms of the polynomials sk(1 ≤ k ≤ 4)
and using Newton’s equations we calculate the polynomials and discriminant of the
family X1, X2, X3, X4 in roots of the polynomial R(r); we obtain

p1 = s1 = 0, p2 = −2s2, p3 = 3s3, p4 = 2s22 − 4s4,

p5 = −5s3s2, p6 = −2s32 + 3s23 + 6s4s2,(3.12)

where s1 = 0, s2 = −l, s3 = −2l, s4 = −ql, corresponding to the polynomial R(r) in
Eq. (3.2). The discriminant Dis of the polynomial R(r) has the form:

Dis(s1, s2, s3, s4) =

∣∣∣∣∣∣∣∣
4 0 2l −6l
0 2l −6l 2l(l + 2q)
2l −6l 2l(l + 2q) −10l2

−6l 2l(l + 2q) −10l2 2l2(l + 6 + 3q)

∣∣∣∣∣∣∣∣ =
= 16l3[l2(1− q) + l(−8q2 + 36q − 27)− 16q3].(3.13)
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The polynomial R(r) thus has a multiple root if and only if

l3[l2(1− q) + l(−8q2 + 36q − 27)− 16q3] = 0.(3.14)

Excluding the case l = 0, which corresponds to a multiple root at r = 0, we find
that the polynomial R(r) has a multiple root for r ≥ r+ if and only if

l2(1− q) + l(−8q2 + 36q − 27)− 16q3 = 0.(3.15)

If q = 0, we obtain the well-known result for a Schwarzschild black hole [10], l = 27,
or Lcr = 3

√
3. If q = 1, then l = 16, or Lcr = 4. The photon capture cross

section for an extreme charged black hole turns out to be considerably smaller than
the capture cross section of a Schwarzschild black hole. The critical value of the
impact parameter, characterizing the capture cross section for a RN black hole, is
determined by the equation

lcr =
(8q2 − 36q + 27) +

√
D1

2(1− q)
,(3.16)

whereD1 = (8q2−36q+27)2+64q3(1−q) = −512

(
q − 9

8

)3

. It is clear from the last

relation that there are circular unstable photon orbits only for q ≤ 9

8
. Substituting

Eq.(3.16) into the expression for the coefficients of the polynomial R(r) it is easy
to calculate the radius of the unstable circular photon orbit (which is the same
as the minimum periastron distance). The orbit of a photon moving from infinity
with the critical impact parameter, determined in accordance with Eq.(3.16) spirals
into circular orbit. To find a radius of photon unstable orbit we will solve Eq.
(3.1) substituting lcr in the relation. From trigonometric formula for roots of cubic
equation we have

rcrit = 2

√
lcr
6

cos
α

3
,(3.17)

where cosα = −
√

27

2lcr
. As it was explained [6] this leads to the formation of

shadows described by the critical value of Lcr or, in other words, in the spherically
symmetric case, shadows are circles with radii Lcr. Therefore, measuring the shadow
size, one could evaluate the black hole charge in black hole mass unitsM . In Fig. 3.1
shadow size and radius of last unstable orbit for photons are given as a function of
charge (including possible tidal charge with a negative q and super-extreme charge
q > 1).
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Fig. 3.1: Shadow (mirage) radius (solid line) and radius of the last circular unstable
photon orbit (dot-dashed line) in M units as a function of q. The critical value
q = 9/8 is shown with dashed vertical line.

4. Consequences

In spite of the cosmic censorship hypothesis that a singularity has to be shielded
by a horizon, properties of naked singularities are a subject of intensive theoretical
studies. As usual spherical symmetrical cases are more easier for analysis and RN
metrics with super extreme charge q > 1 are investigated in a number of papers.

So, if we assume that q > 1, we can see from Eq. (3.16) that for q ≤ 9/8
we have shadows, while for q > 9/8 the shadows do not exist. For these charges
(q > 9/8) incoming photons always scattering by black holes for l ̸= 0 because
the polynomial R(r) has no multiple roots but it has a single positive root (it
means scattering) since for great positive r we have R(r) > 0 while R(0) < 0.
The degenerate case of radial trajectories of photons (l = 0) can be ignored as
the case with ”zero measure” or the structural unstable case using the Poincare –
Pontryagin – Andronov – Anosov – Arnold terminology. It means that in any small
vicinity a behavior of other geodesics from the radial ones is qualitatively different,
therefore, such objects can not be observed in nature. Therefore, shadows exist
only for q ≤ 9/8. So, q = 9/8 is critical value which is characterized ”catastrophe”
or the qualitatively different behavior of the system (appearance and disappearance
of shadows). For the critical q = 9/8 we have the smallest shadow with l = 27/2
and a shadow size ξ =

√
13.5 ≈ 3.674 (in M units) or 38.4 µas in diameter for the
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black hole at the Galactic Center. For this impact parameter we have corresponding
circular unstable orbit for photons with r = 3/2 (in M units).

If we adopt the distance toward the Galactic Center d∗ = 8.3 kpc and mass of
the black hole MBH = 4.4 ∗ 106M⊙ [17], then we have the angle 10.45 µas for the

corresponding Schwarzschild radius Rg = 2.95 ∗ MBH

M⊙
∗ 105 cm, so a shadow size

for the Schwarzschild black hole is around 54.2 µas, for a black hole with a tidal
charge (q = −6.4) suggested by Bin-Nun [1] a shadow size is about 88.1 µas, while
for the extreme charge (q = 1) and critical charge (q = 9/8) the shadow sizes are
41.8 µas and 38.4 µas, respectively. A couple of years ago Doeleman et al. [3]
claimed that intrinsic diameter of Sgr A∗ is 37+16

−10 µas at the 3 σ confidence level.
If we believe in GR and the central object is a black hole, then we have to conclude
that a shadow is practically coincides with the intrinsic diameter, so in spite of the
fact that a Schwarzschild black hole is marginally consistent with observations, a
Reissner – Nordström black hole provides much better fit of a shadow size, while a
black hole with a significant tidal charge (q = −6.4) is out of 9.6 σ level interval.
Later on, an accuracy of intrinsic size measurements was significantly improved, so
Fish et al. [18] gave 41.3+5.4

−4.3 µas (at 3 σ level) on day 95, 44.4+3.0
−3.0 µas on day 96

and 42.6+3.1
−2.9 µas on day 97, so a tidal charge (q = −6.4) is out of 26 σ level for day

95 and even less probable for other observations.

The black hole in the elliptical galaxy M87 looks also perspective to evaluate
shadow size [19] (probably even its shape in the future to estimate a black hole
spin) because the distance toward the galaxy is 16 ± 0.6 Mpc, black hole mass is
MM87 = (6.2 ± 0.4) × 109M⊙, so that an angle (7.3 ± 0.5)µas corresponds to the
Schwarzschild radius [19], so the angle is comparable with the corresponding value
considered earlier for our Galactic Center case. In paper [19] it was reported that
smallest shadow size is 5.5±0.4RSCH with 1 σ errors (where RSCH = 2GMM87/c

2),
so that at the moment the shadow size is consistent with the Schwarzschild metric
for the object.

5. Conclusions

Based on observations [3, 18] one can say that between for the Schwarzschild
black hole model we have tensions between evaluations of black hole mass done
with observations of bright star orbits near the Galactic Center and the evaluated
shadow size. To reduce tensions between estimates of the black hole mass and the
intrinsic size measurements, one can use the Reissner – Nordström metric with a
significant charge which is comparable with the critical one. We do not claim that
the corresponding charge has an electric origin because an interstellar environment is
electrically neutral, so the corresponding charge may be induced (like a tidal charge
induced by extra dimension) and has a non-electric origin. Recent estimates of the
smallest structure in the M87 published in paper [19] do not need an introduction
of charge (tidal or normal) to fit observational data because sizes of the smallest
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spot near the black hole at the object are consistent with the shadow size evaluated
for the Schwarzschild metric.

The author thanks D. Borka, V. Borka Jovanović, F. De Paolis, G. Djordjević,
G. Ingrosso, P. Jovanović, A. A. Nucita, B. Vlahovic for useful discussions and
organizers of the 6th Balkan Workshop (BW2013) for the kind attention to the
contribution.
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