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NONLOCAL MODIFIED GRAVITY AND ITS COSMOLOGICAL
SOLUTIONS ∗

Branko Dragovich

Abstract. Besides great achievements and many nice properties, general relativity as
theory of gravity is not a complete theory. There are many attempts to its modifica-
tion. One of promising modern approaches towards more complete theory of gravity
is its nonlocal modification. We present here a brief review of nonlocal gravity with
some its cosmological solutions. In particular, we pay special attention to two attrac-
tive nonlocal models, in which nonlocality is expressed by an analytic function of the
d’Alembert operator 2 = 1√

−g
∂µ

√
−ggµν∂ν . In these models, we are mainly interested

in nonsingular bounce solutions for the cosmic scale factor.

1. Introduction

It is well known that General Relativity is the Einstein theory of gravity, which
is usually presented as tensorial equation of motion for gravitational (metric) field
gµν : Rµν − 1

2Rgµν = 8πGTµν , where Rµν is the Ricci curvature tensor, R is
the Ricci scalar, Tµν is the energy-momentum tensor, and speed of light is taken
c = 1. This Einstein equation can be derived from the Einstein-Hilbert action
S = 1

16πG

∫ √
−g R d4x+

∫ √
−gLm d4x, where g = det(gµν) and Lm is Lagrangian

of matter.

Motivations for modification of general relativity usually come from some prob-
lems of quantum gravity, string theory, astrophysics and cosmology (for a review, see
[1, 2, 3]). Modifications with higher order derivatives can improve problem with UV
divergences. Here, we are mainly interested in cosmological motives to modify the
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Einstein theory of gravity. If general relativity is gravity theory for the universe as
a whole and the universe has Friedmann-Lemâıtre-Robertson-Walker (FLRW) met-
ric, then there is in the universe about 68% of dark energy, 27% of dark matter, and
only about 5% of visible matter [4]. The visible matter is described by the Standard
model of particle physics. However, existence of this 95% of dark energy-matter
content of the universe is rather hypothetical, because it has been not verified in
the laboratory conditions and there is no non-gravitational indications of its pres-
ence at the cosmic scale. There is also problem of the Big Bang singularity. Namely,
under rather general conditions, general relativity contains cosmological solutions
for scale factor a(t) with a(0) = 0, what means an infinite matter density at the
beginning. When physical theory contains singularity, it is evident indication that
in the vicinity of singularity such theory has to be appropriately modified.

In this paper, we briefly review nonlocal modification of general relativity in a
way to point out cosmological solutions without Big Bang singularity. We consider
two nonlocal models and present their nonsingular bounce cosmological solutions.
To have more complete presentation of these models we also give some power-law
singular solutions of the form a(t) = a0 |t|α.

In Section 2 we describe some general characteristics of nonlocal modified grav-
ity, which are useful for understanding what follows in the sequel. Section 3 contains
a review of both nonsingular bounce and singular cosmological solutions for two non-
local gravity models without matter. Last section contains a discussion with some
concluding remarks.

2. Nonlocal Modified Gravity

Any well founded modification of the Einstein theory of gravity has to contain
general relativity and to be verified on the dynamics of the Solar system. In other
words, it has to be a generalization of the general theory of relativity. Mathemat-
ically, it should be formulated within the pseudo-Riemannian geometry in terms
of covariant quantities and take into account equivalence of the inertial and grav-
itational mass. Consequently, the Ricci scalar R in gravity Lagrangian Lg of the
Einstein-Hilbert action has to be replaced by a function which, in general, may
contain not only R but also any covariant construction which is possible in the
Riemannian geometry. However there are infinitely many such possibilities. Unfor-
tunately, so far there is no acceptable theoretical principle which could make definite
choice. The Einstein-Hilbert action can be viewed as realization of the principle of
simplicity in construction of Lg.

We consider here nonlocal modified gravity. Usually a modified gravity model
contains an infinite number of spacetime derivatives in the form of some power
expansions of the d’Alembert operator 2 = 1√

−g
∂µ

√
−ggµν∂ν or its inverse 2−1, or

some combination of both. In this article, we are mainly interested in nonlocality
expressed in the form of an analytic function F(2) =

∑∞
n=0 fn2

n, where coefficients
fn should be determined from various conditions. However, some models with
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2−1R, have been also considered (see, e.g. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and
references therein). For nonlocal gravity with 2−1 see also [15, 16]. Many aspects
of nonlocal gravity models have been considered, see e.g. [17, 18, 19, 20, 21] and
references therein.

Motivation to modify gravity in a nonlocal way comes mainly from string theory,
in particular from string field theory and p-adic string theory. Namely, strings are
one-dimensional extended objects and, consequently, their field theory description
contains spacetime nonlocality. We will discuss some features in the framework of
p-adic string theory in Section 4.

In order to better understand nonlocal modified gravity itself, we investigate it
without presence of matter. Models of nonlocal gravity which we mainly investigate
are given by the action

(2.1) S =

∫
d4x

√
−g

(R− 2Λ

16πG
+RqF(2)R

)
, q = +1,−1,

where Λ is cosmological constant, which is for the first time introduced by Einstein
in 1917. Thus this nonlocality is given by the term RqF(2)R, where q = ±1 and
F(2) =

∑∞
n=0 fn2

n, i.e. we investigate two nonlocal gravity models: the first one
with q = +1 and the second one with q = −1.

Before to proceed, it is worth mentioning that analytic function
F(2) =

∑∞
n=0 fn2

n, has to satisfy some conditions, in order to escape unphysical
degrees of freedom like ghosts and tachyons, and to have good behavior in quantum
sector (see discussion in [22, 23]).

3. Models, Their Equations of Motion and Cosmological Solutions

In the sequel we shall consider the above mentioned two nonlocal models (2.1)
separately for q = +1 and q = −1.

We use the FLRW metric ds2 = −dt2 + a2(t)
(

dr2

1−kr2 + r2dθ2 + r2 sin2 θdϕ2
)
and

investigate all three possibilities for curvature parameter k = 0,±1. In the FLRW

metric the Ricci scalar curvature is R = 6
(

ä
a + ȧ2

a2 + k
a2

)
and 2 = −∂2

t − 3H∂t,

where H = ȧ
a is the Hubble parameter. Note that we use natural system of units

in which speed of light c = 1.

3.1. Nonlocal Gravity Model Quadratic in R

Nonlocal gravity model which is quadratic in R is given by the action [24, 25]

(3.1) S =

∫
d4x

√
−g

(R− 2Λ

16πG
+RF(2)R

)
.

This model is important because it is ghost free and has some nonsingular bounce
solutions, which can be regarded as solution of the Big Bang cosmological singularity
problem.
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The corresponding equation of motion follows from the variation of the action
(3.1) with respect to metric gµν and it is

2RµνF(2)R− 2(∇µ∇ν − gµν2)(F(2)R)− 1
2gµνRF(2)R

+
∑∞

n=1
fn
2

∑n−1
l=0

(
gµν

(
gαβ∂α2

lR∂β2
n−1−lR+2lR2n−lR

)
−2∂µ2

lR∂ν2
n−1−lR

)
= −1

8πG (Gµν + Λgµν).(3.2)

When metric is of the FLRW form in (3.2) then there are only two independent
equations. It is useful to use the trace and 00-component of (3.2), and respectively
they are:

62(F(2)R) +
∑∞

n=1 fn
∑n−1

l=0

(
∂µ2

lR∂µ2n−1−lR+ 22lR2n−lR
)

= 1
8πGR− Λ

2πG ,(3.3)

2R00F(2)R− 2(∇0∇0 − g002)(F(2)R)− 1
2g00RF(2)R

+
∑∞

n=1
fn
2

∑n−1
l=0

(
g00

(
gαβ∂α2

lR∂β2
n−1−lR+2lR2n−lR

)
−2∂02

lR∂02
n−1−lR

)
= −1

8πG (G00 + Λg00).(3.4)

We are interested in cosmological solutions for the universe with FLRW metric
and even in such simplified case it is rather difficult to find solutions of the above
equations. To evaluate the above equations, the following Ansätze were used:

• Linear Ansatz: 2R = rR+ s, where r and s are constants.

• Quadratic Ansatz: 2R = qR2, where q is a constant.

• Qubic Ansatz: 2R = qR3, where q is a constant.

• Ansatz 2nR = cnR
n+1, n ≥ 1, where cn are constants.

In fact these Ansätze make some constraints on possible solutions, but on the other
hand they simplify formalism to find a particular solution.

3.1.1. Linear Ansatz and Nonsingular Bounce Cosmological Solutions

Using Ansatz 2R = rR + s a few nonsingular bounce solutions for the scale

factor are found: a(t) = a0 cosh
(√

Λ
3 t
)
(see [24, 25]), a(t) = a0e

1
2

√
Λ
3 t2 (see [27])

and a(t) = a0(σe
λt + τe−λt) [29]. The first two consequences of this Ansatz are

(3.5) 2nR = rn(R+
s

r
), n ≥ 1, F(2)R = F(r)R+

s

r
(F(r)− f0),

which considerably simplify nonlocal term.
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Now we can search for a solution of the scale factor a(t) in the form of a linear
combination of eλt and e−λt, i.e.

(3.6) a(t) = a0(σe
λt + τe−λt), 0 < a0, λ, σ, τ ∈ R.

Then the corresponding expressions for the Hubble parameter H(t) = ȧ
a , scalar

curvature R(t) = 6
a2 (aä+ ȧ2 + k) and 2R are:

(3.7)

H(t) =
λ(σeλt − τe−λt)

σeλt + τe−λt
,

R(t) =
6
(
2a20λ

2
(
σ2e4tλ + τ2

)
+ ke2tλ

)
a20 (σe

2tλ + τ)
2 ,

2R = −
12λ2e2tλ

(
4a20λ

2στ − k
)

a20 (σe
2tλ + τ)

2 .

We can rewrite 2R as

(3.8) 2R = 2λ2R− 24λ4, r = 2λ2, s = −24λ4.

Substituting parameters r and s from (3.8) into (3.5) one obtains

(3.9)
2nR = (2λ2)n(R− 12λ2), n ≥ 1,

F(2)R = F(2λ2)R− 12λ2(F(2λ2)− f0).

Using this in (3.3) and (3.4) we obtain

36λ2F(2λ2)(R− 12λ2) + F ′(2λ2)
(
4λ2(R− 12λ2)2 − Ṙ2

)
−24λ2f0(R− 12λ2) = R−4Λ

8πG ,(3.10)

(2R00 +
1
2R)

(
F(2λ2)R− 12λ2(F(2λ2)− f0)

)
−1

2F
′(2λ2)

(
Ṙ2 + 2λ2(R− 12λ2)2

)
− 6λ2(F(2λ2)− f0)(R− 12λ2)

+6HF(2λ2)Ṙ = − 1
8πG (G00 − Λ).(3.11)

Substituting a(t) from (3.6) into equations (3.10) and (3.11) one obtains two
equations as polynomials in e2λt. Taking coefficients of these polynomials to be
zero one obtains a system of equations and their solution determines parameters
a0, λ, σ, τ and yields some conditions for function F(2λ2). For details see [29].

3.1.2. Quadratic Ansatz and Power-Law Cosmological Solutions
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New Ansätze 2R = rR, 2R = qR2 and 2nR = cnR
n+1, were introduced in

[28] and they contain solution for R = 0 which satisfies also equations of motion.
When k = 0 there is only static solution a = constant, and for k = −1 solution is
a(t) = |t|.

In particular, Ansatz 2R = qR2 is very interesting. The corresponding differ-
ential equation for the Hubble parameter, if k = 0, is

(3.12)
...
H + 4Ḣ2 + 7HḦ + 12H2Ḣ + 6q(Ḣ2 + 4H2Ḣ + 4H4) = 0

with solutions

(3.13) Hη(t) =
2η + 1

3

1

t+ C1
, qη =

6(η − 1)

(2η + 1)(4η − 1)
, η ∈ R

and H = 1
2

1
t+C1

, what is equivalent to the Ansatz 2R = rR with R = 0.

The corresponding scalar curvature is given by

(3.14) Rη =
2

3

(2η + 1)(4η − 1)

(t+ C1)2
, η ∈ R.

By straightforward calculation one can show that 2nRn = 0 when n ∈ N. This
simplifies the equations considerably. For this particular case of solutions operator
F and trace equation (3.3) effectively become

F(2) =
∑n−1

k=0 fk2
k,(3.15)∑n+1

k=1 fk
∑k−1

l=0 (∂µ2
lR∂µ2k−1−lR+ 22lR2k−lR) + 62F(2)R = R

8πG .(3.16)

In particular case n = 2 the trace formula becomes

36
35f0R

2 + f1(−Ṙ2 + 12
35R

3) + f2(− 24
35RṘ2 + 72

1225R
4) + f3(− 144

1225R
2Ṙ2)

= R
8πG .(3.17)

Some details on all the above three Ansätze can be found in [28].

3.2. Nonlocal Gravity Model with Term R−1F(2)R

This model was introduced recently [30] and its action may be written in the
form

(3.18) S =

∫
d4x

√
−g

( R

16πG
+R−1F(2)R

)
,

where F(2) =
∑∞

n=0 fn2
n and f0 = − Λ

8πG plays role of the cosmological constant.

For example, F(2) can be of the form F(2) = − Λ
8πGe−β2.
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The nonlocal term R−1F(2)R in (3.18) is invariant under transformation R →
CR. It means that effect of nonlocality does not depend on the magnitude of scalar
curvature R, but on its spacetime dependence, and in the FLRW case is sensitive
only to dependence of R on time t. When R = constant there is no effect of
nonlocality, but only of f0 term, what corresponds to cosmological constant.

By variation of action (3.18) with respect to metric gµν one obtains the equations
of motion for gµν

RµνV − (∇µ∇ν − gµν2)V − 1
2gµνR

−1F(2)R

+
∑∞

n=1
fn
2

∑n−1
l=0

(
gµν

(
∂α2

l(R−1)∂α2n−1−lR+2l(R−1)2n−lR
)

−2∂µ2
l(R−1)∂ν2

n−1−lR
)
= − Gµν

16πG ,(3.19)

V = F(2)R−1 −R−2F(2)R,

which derivation is rather complicate, see [31]. Note that operator 2 acts not only
on R but also on R−1. There are only two independent equations when metric is
of the FLRW type.

The trace of the equation (3.19) is

RV + 32V +
∑∞

n=1 fn
∑n−1

l=0

(
∂α2

l(R−1)∂α2n−1−lR+ 22l(R−1)2n−lR
)

−2R−1F(2)R = R
16πG .(3.20)

The 00-component of (3.19) is

R00V − (∇0∇0 − g002)V − 1
2g00R

−1F(2)R

+
∑∞

n=1
fn
2

∑n−1
l=0

(
g00

(
∂α2

l(R−1)∂α2n−1−lR+2l(R−1)2n−lR
)

−2∂02
l(R−1)∂02

n−1−lR
)
= − G00

16πG .(3.21)

These trace and 00-component equations are equivalent for the FLRW universe in
the equation of motion (20), but they are more suitable for usage.

3.2.1. Some Cosmological Solutions for Constant R

We are interested in some exact nonsingular cosmological solutions for the scale
factor a(t) in (3.19). The Ricci curvature R in the above equations of motion can
be calculated by expression

R = 6

(
ä

a
+

ȧ2

a2
+

k

a2

)
.

Case k = 0, a(t) = a0e
λt.

We have a(t) = a0e
λt, ȧ = λa, ä = λ2a, H = ȧ

a = λ andR = 6
(

ä
a + ȧ2

a2

)
=

12λ2. Putting a(t) = a0e
λt in the above equations (3.20) and (3.21), they are satis-

fied with λ = ±
√

Λ
3 , where Λ = −8πGf0 with f0 < 0.
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Case k = +1, a(t) = 1
λ coshλt.

Starting with a(t) = a0 coshλt, we have ȧ = λa0 sinhλt, H = ȧ
a = λ tanhλt

and R = 6
(

ä
a + ȧ2

a2 + 1
a2

)
= 12λ2 if a0 = 1

λ . Hence equation (3.20) and (3.21) are

satisfied for cosmic scale factor a(t) = 1
λ coshλt.

In a similar way, one can obtain another solution:

Case k = −1, a(t) = 1
λ | sinhλt|.

Thus we have the following three cosmological solutions for R = 12λ2:

1. k = 0, a(t) = a0 e
λt, nonsingular bounce solution.

2. k = +1, a(t) = 1
λ coshλt, nonsingular bounce solution.

3. k = −1, a(t) = 1
λ | sinhλt|, singular cosmic solution.

All of this solution have exponential behavior for large value of time t.

Note that in all the above three cases the following two tensors have also the
same expressions:

(3.22) Rµν =
1

4
Rgµν , Gµν = −1

4
Rgµν .

Minkowski background space follows from the de Sitter solution k = 0, a(t) =
a0e

λt. Namely, when λ → 0 then a(t) → a0 and H = R = 0.

In all the above cases 2R = 0 and thus coefficients fn, n ≥ 1 may be arbitrary.
As a consequence, in these cases nonlocality does not play a role.

3.2.2. Some Power-Law Cosmological Solutions

Power-law solutions in the form a(t) = a0|t − t0|α, have been investigated by
some Ansätze in [30] and without Ansätze [32]. The corresponding Ricci scalar and
the Hubble parameter are:

R(t) = 6

(
ä

a
+

ȧ2

a2
+

1

a2

)
= 6

(
α(2α− 1)(t− t0)

−2 +
k

a20
(t− t0)

−2α
)

H(t) =
ȧ

a
=

α

|t− t0|
.

Now 2 = −∂2
t − 3α

|t−t0|∂t. An analysis has been performed for α ̸= 0, 1
2 , and also

α → 0, α → 1
2 for k = +1,−1, 0. For details, the reader refers to [30, 32].
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4. Discussion and Concluding Remarks

To illustrate the form of the abave nonlocality (3.1) it is worth to start from
exact effective Lagrangian at the tree level for p-adic closed and open scalar strings.
This Lagrangian is as follows (see, e.g. [33]):

Lp = −mD

2g2
p2

p−1φp
− 2

2m2 φ− mD

2h2
p4

p2−1ϕp
− 2

4m2 ϕ+ mD

h2
p4

p4−1ϕ
p2+1

−mD

g2
p2

p2−1ϕ
p(p−1)

2 + mD

g2
p2

p2−1φ
p+1ϕ

p(p−1)
2 ,(4.1)

where φ denotes open strings, D is spacetime dimensionality (in the sequel we
shall take D = 4), and g and h are coupling constants for open and closed strings,
respectively. Scalar field ϕ(x) corresponds to closed p-adic strings and could be
related to gravity scalar curvature as ϕ = f(R), where f is an appropriate function.
The corresponding equations of motion are:

(4.2) p−
2

2m2 φ = φpϕ
p(p−1)

2 , p−
2

4m2 ϕ = ϕp2

+
h2

2g2
p− 1

p
ϕ

p(p−1)
2 −1

(
φp+1 − 1

)
.

There are the following constant vacuum solutions: (i)φ = ϕ = 0, (ii)φ = ϕ = 1
and (iii)φ = ϕ− p

2 = constant.

In the case that the open string field φ = 0, one obtains equation of motion only
for closed string ϕ. One can now construct a toy nonlocal gravity model supposing
that closed scalar string is related to the Ricci scalar curvature as ϕ = − 1

m2R =
− 4

3g2 (16πG)R. Taking p = 2, we obtain the following Lagrangian for gravity sector:

Lg =
1

16πG
R− 8

3

C2

h2
Re−

ln 22

4m2 R− 1024

405g6h2
(16πG)3R5.(4.3)

To compare third term to the first one in (4.3), let us note that (16πG)3R5 =
(16πGR)4 R

16πG . It follows that (GR)4 has to be dimensionless after rewriting it
using constants c and ~. As Ricci scalar R has dimension Time−2 it means that
G has to be replaced by the Planck time as t2P = ~G

c5 ∼ 10−88s2. Hence (GR)4 →
(~Gc5 R)4 ∼ 10−352R4 and third term in (4.3) can be neglected with respect to the

first one, except when R ∼ t−2
P . The nonlocal model with only first two terms

corresponds to case considered above in this article. We shall consider this model
including R5 term elsewhere.

It is worth noting that the above two models with nonlocal terms RF(2)R and
R−1F(2)R are equivalent in the case when R = constant, because their equations
of motion have the same solutions. These solutions do not depend on F(2)− f0. It
would be useful to find cosmological solutions which have definite connection with
the explicit form of nonlocal operator F(2).

Let us mention that many properties of (3.1) and its extended quadratic versions
have been considered, see [22, 23, 26, 35, 36].

Nonlocal model (3.18) is a new one and was not considered before [30], it seems
to be important and deserves further investigation. There are some gravity models
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modified by term R−1, but they are neither nonlocal nor pass Solar system tests,
see e.g. [34].

Note that nonlocal cosmology is related also to cosmological models in which
matter sector contains nonlocality (see, e.g. [37, 38, 39, 40, 41, 42]). String field
theory and p-adic string theory models have played significant role in motivation
and construction of such models.

Nonsingular bounce cosmological solutions are very important (as reviews on
bouncing cosmology, see e.g. [43, 44]) and their progress in nonlocal gravity may
be a further step towards cosmology of the cyclic universe [45].
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