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PROSPECTS IN STRING FIELD THEORY ∗

Loriano Bonora

Abstract. This is a review of the motivations for and recent progress in open string
field theory

1. Introduction

The most authoritative candidate to represent the UV completion of our low energy
field theory models, in particular the standard model and Einstein-Hilbert gravity,
is (super)string theory. Superstring theories seems to have all the ingredients needed
to describe the fundamental physical interactions. In particular it provides a con-
sistent quantization of gravity. However how the various physical phenomena are
accommodated in the string theory framework, starting from the alimentary parti-
cle physics and ending with the physics of extreme large distances and times, is still
an open problem, to say the least, notwithstanding the strenuous endeavor of string
theorists and undeniable, but partial, progress made in many separate applications
of string theory. Although the picture is still not precise it is plausible that the
latter can accommodate the physics of the standard model of elementary particles
as well as a description of the evolution of the universe; it does also shed light on the
black hole physics. However many questions remain unanswered, the identification
of the vacuum to start with.

The panorama of superstring theory, on one side, is the same as about twenty
years ago. There are five consistent superstring theories in 10D, one open-closed
(type I) and four closed (IIA, IIB and two heterotic ones). In addition we have
another consistent theory in 11D (M theory), whose low energy limit is 11D su-
pergravity. There exist also other consistent non-supersymmetric theories, but the
attention is mostly focused on the supersymmetric ones. The latter are connected
by dualities and appear as limiting cases of a unique theory, characterized by a
large moduli space, when the relevant moduli take on specific limiting values. It is
this unique theory that people understand when generically referring to superstring
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theory. The ordinary way to extract low energy information is to compactify the
extra dimensions or else to consider configurations of branes. In a way or another
it is possible, for instance, to reproduce the spectrum and various qualitative fea-
tures of the standard model and to produce effective models for the evolution of the
universe, describing for instance inflation.

On the other hand in this panorama a different point of view was introduced by
Maldacena with his idea of the AdS/CFT correspondence. A stack of D3-branes
in type IIB superstring theory generate an AdS geometry that splits physics into
two separated systems, a supersymmetric gauge theory and a supergravity theory.
However since the theory is unique, the two systems must be related in a one-to-one
way. This argument is the basis of the correspondence. The latter is a duality of the
strong-weak coupling type, so that it can be directly verified only in the presence
of supersymmetry: the original case refers to N=4 conformal gauge theory in 4D
and a supergravity theory in 10D; such an amount of supersymmetry guarantees
the persistence of certain properties while going from weak to strong coupling.
AdS/CFT has been nevertheless hypothesized also in the case of reduced or no
supersymmetry, or for non-conformal theories. The basic idea is the holographic
correspondence between a gauge theory on the boundary of an AdS space and a
(super)gravity theory that lives on the bulk of the latter. This brings into the
game a new concept: gauge theories and gravity theories seem to be complementary
rather than supplementary, they complete each other rather than being two separate
entities, they seem to describe in different ways the same basic underlying physics.

The AdS/CFT correspondence, as it is commonly used, relates two field theories,
but it should not be forgotten that, in the original case, it is formulated in the
framework of superstring theory and it requires at least type IIB theory on AdS5×S5

for the full duality to work. So we are led to conclude that the natural framework
for this kind of correspondence is string theory. And since the low energy effective
theory of the open strings on a stack of D-branes is a gauge theory, while gravity
is generated by closed strings, one is naturally led to think that the basic duality
is the one between open and closed strings. Even more, since closed strings source
D-branes, it seems unlikely to be able to treat open and closed string as separate
entities (except for closed strings at the perturbative level).

A logical conclusion of the previous argument is that a full understanding of
holographic dualities can be acquired only in the framework of string theory, and
that the underlying duality to be considered is the open-closed string duality. Now
the question is: what is the best context in which these problems can be ana-
lyzed? The abovementioned (super)string theories are first quantized theories, and
although one can go a long way even without a second quantized string theory, there
seems to be insurmountable difficulties if one tries to draw a completely satisfactory
picture of the theory. For instance, while there are no obstructions in constructing
on-shell perturbative amplitudes of a given string theory, there is no unambiguous
guide in constructing off-shell amplitudes.

Thus it is extremely desirable, if not compulsory, to have a second quantized
string theory available. In this regard, the present situation is a as follows. We
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have a covariant formulation (à la Witten) of second quantized bosonic open string
theory (OSFT) with a cubic interaction term, which is well defined and consistent
(see below). Witten formulated also a boundary SFT, a theory of 2D theories
so to speak, defined on a unit disk with perturbations on the boundary, which,
however, has serious normalization problems. As for bosonic closed string theories,
their second quantized version can be formulated in analogy to the OSFT, but
the cubic interaction term is not enough to cover the moduli space (see below),
so one is obliged to introduce infinite many interaction terms, ending up with a
nonpolynomial theory; as a consequence perhaps this theory cannot be properly
called a field theory. Coming to the second quantized superstring theories, there
is the analog of the bosonic OSFT, also proposed by Witten; this theory however
has contact singularities. The modifications that have been proposed avoid these
singularities but have other problems. A successful alternative is Berkovits’ open
superstring field theory, modelled on the WZW model; this passes many tests, its
basic drawback being that it is formulated only for the NS sector while the R sector
(the fermionic one) is at present missing.

Faced with the above situation one is tempted to wonder whether a second
quantized superstring field theory is at all possible. On the other hand a bosonic
closed SFT does not seem to be (at least) technically viable (see above). If this is so
one is obliged to conclude that the only consistent SFT at our disposal is Witten’s
open SFT. Does it make sense to focus on this theory and take it seriously? It
should be pointed out that we have no a priori reason to believe that a unique and
complete SFT theory exists. On the other hand the objections against Witten’s
OSFT (the tachyon, the tadpoles contributions) seem by now to be overcome: the
recent successes of this theory indicate that these problems are not intrinsic to the
theory but rather to the way we solve it. The traditional motivation: OSFT is an
extremely useful playground while waiting for the its consistent full supersymmetric
version is by now too diminishing and perhaps misleading. We will return to this
point at the end of the paper. In the following we will focus on some aspects of
OSFT à la Witten.

2. The bosonic open SFT

This is a short summary of first quantized open bosonic theory.

First quantized open string theory in the critical dimension D=26 is formulated
in terms of quantum oscillators αµn, −∞ < n < ∞, µ = 0, 1, . . . , 25, which come
from the mode expansion of the string scalar field

Xµ(z) =
1

2
xµ − i

2
pµ ln z +

i√
2

∑
n̸=0

αµn
n
z−n

having set the characteristic square length of the string α′ = 1. They satisfy
the algebra [αµm, α

ν
n] = mηµνδn+m,0, η being the space–time Minkowski metric.

The vacuum is defined by αµn|0⟩ = 0 for n > 0 and pµ|0⟩ = 0. The states of the
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theory are constructed by applying to the vacuum the remaining quantum oscillators
αµ†n = αµ−n, with n > 0. Any such state |ϕ⟩ is given momentum kµ by multiplying
it by the eigenstate eikx. This state with momentum will be denoted by |ϕ, k⟩. In
order for such states to be physical they must satisfy the conditions

L(X)
n |ϕ, k⟩ = 0, n > 0, (L

(X)
0 − 1)|ϕ, k⟩ = 0(2.1)

where L
(X)
n are the matter Virasoro generators

L(X)
n =

1

2

∞∑
k=−∞

: αµn−kα
ν
k : ηµν(2.2)

Here α0 = p and :: denotes normal ordering. The conditions (2.1) are the quantum
translation of the classical vanishing of the energy–momentum tensor.

The conditions (2.1) define the physical spectrum of the theory (in D=26). All
the states are ordered according to the level, the level being a natural number

specified by the eigenvalue of L
(X)
0 + L

(gh)
0 − p2

2 . The lowest lying state (level
0) is the tachyon represented by the vacuum with momentum k and square mass
M2 = −1. The next (level 1) is the massless vector state ζµ α

µ
−1|0⟩eikx with k2 = 0

and ζ ·k = 0, which is interpreted as a gauge field. The other states are all massive,
with increasing masses proportional to the Planck mass.

To each of these states is associated a vertex operator. For instance, to the
tachyon we associate Vt(k) =: eik·X :; to the vector state VA(k, ζ) =: ζ · Ẋeik·X :,
where the dot on top of X denotes the tangent derivative with respect to the world–
sheet boundary (the real axis in the z UHP); and so on. In this way one can formu-
late rules to calculate any kind of amplitude of these operators ⟨V1(k1) . . . VN (kN )⟩,
as far as these amplitudes are on shell. At low energy, α′ → 0, such amplitudes
reproduce those of the corresponding field theory (for instance, the amplitudes of
VA reproduce the amplitudes of a Maxwell field theory). If we want to compute
off–shell amplitudes the above rules are insufficient and in general we have to resort
to a field theory of strings. This was a major motivation for introducing string field
theories.

So far we have ignored ghosts. Indeed the b, c ghosts, which come from the
gauge fixing of reparametrization invariance via the Faddeev–Popov recipe, play a
minor role in perturbative string theory. They play a much more important role
in SFT. They are also expanded in modes cn and bn and one can construct the
corresponding Virasoro generators

L(gh)
n =:

∑
k

(2n+ k) b−kck+n :(2.3)

Both (2.2) and (2.3) obey the same Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn,0(2.4)
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The central charge c equals the number of X fields in the matter case (i.e. 26), while
it equals -26 in the case of the b, c ghosts. So the total central charge vanishes in
D=26. This guarantees the absence of any trace anomaly, and therefore consistency
of the bosonic string theory as a gauge theory. From now on we concentrate only
on this case.

The previous results about ghosts and critical dimension, can be usefully refor-
mulated in terms of BRST symmetry and its charge Q. Q is defined by

Q =
∑
n

: cn

(
L(X)
n +

1

2
L(gh)
n

)
:(2.5)

It is hermitean Q† = Q and its basic property is nilpotency, Q2 = 0 in critical
dimension. The study of the physical spectrum can be reformulated in terms of the
cohomology of Q: the physical states of perturbative string theory are the states of
ghost number 1 that are annihilated by Q, defined up to states obtained by acting
with Q on any state of ghost number 0. They can be represented by the old physical
states |ϕ, k⟩ tensored with the ghost factor c1|0⟩.

With this at hand we can now turn to string field theory.

3. OSFT

The open string field theory action proposed by Witten, [11], is defined in D=26 by
the action

S(Ψ) = − 1

g2o

∫ (
1

2
Ψ ∗QΨ+

1

3
Ψ ∗Ψ ∗Ψ

)
.(3.1)

This action is clearly reminiscent of the Chern–Simons action in 3D. In this expres-
sion Ψ is the string field. It can be understood either as a classical functional of
the open string configurations Ψ(xµ(z)), or as a vector in the Fock space of states
of the open string theory. In the sequel we will consider for simplicity only this
second point of view. In the field theory limit it makes sense to represent Ψ as a
superposition of Fock space states with ghost number 1, with coefficient represented
by (infinite many) local fields,

|Ψ⟩ = (ϕ(x) +Aµ(x)a
µ†
1 + . . .)c1|0⟩.(3.2)

The BRST chargeQ is the one introduced above for the first quantized string theory.

One of the most fundamental ingredients is the star product. Physically it
represents the string interaction, that is the process of two strings coming together to
form a third string. More precisely the product of two string fields Ψ1,Ψ2 represents
the process of identifying the right half of the first string with the left half of the
second string and integrating over the overlapping degrees of freedom, to produce
a third string which corresponds to Ψ1 ∗Ψ2. This can be implemented in different
ways, either by using the classical string functional, or by means of the oscillator
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formalism. Further on we will briefly illustrate the method based on conformal field
theory.

Finally the integration in (3.1) corresponds to bending the left half of the string
over the right half and integrating over the corresponding degrees of freedom in
such a way as to produce a number.

The following rules are obeyed

Q2 = 0,∫
QΨ = 0,

(Ψ1 ∗Ψ2) ∗Ψ3 = Ψ1 ∗ (Ψ2 ∗Ψ3),

Q(Ψ1 ∗Ψ2) = (QΨ1) ∗Ψ2 + (−1)|Ψ1|Ψ1 ∗ (QΨ2),(3.3)

where |Ψ| is the Grassmannality of the string field Ψ, which, for bosonic strings,
coincides with the ghost number. The action (3.1) is invariant under the BRST
transformation

δΨ = QΛ +Ψ ∗ Λ− Λ ∗Ψ.(3.4)

Finally, the ghost numbers of the various objects Q,Ψ,Λ, ∗,
∫

are 1, 1, 0, 0,−3, re-
spectively.

Let us now see in more detail how to implement the star product. Let us consider
three unit semi-disks in the upper half za (a = 1, 2, 3) plane. Each one represents the
string freely propagating in semicircles from the origin (world-sheet time τ = −∞)
to the unit circle |za| = 1 (τ = 0), where the interaction is going to take place. We
map each unit semi-disk to a 120◦ wedge of the complex plane via the following
conformal maps:

fa(za) = α2−af(za) , a = 1, 2, 3,(3.5)

where

f(z) =
(1 + iz

1− iz

) 2
3

.(3.6)

Here α = e
2πi
3 . In this way the three semi-disks are mapped to non-overlapping

(except along the edges) regions in such a way as to fill up a unit disk centered
at the origin. The curvature is zero everywhere except at the center of the disk,
which represents the common midpoint of the three strings in interaction. Finally
the interaction vertex is defined by means of a CFT correlation function on the disk
in the following way∫

ψ ∗ ϕ ∗ χ = ⟨f1 ◦ ψ(0) f2 ◦ ϕ(0) f3 ◦ χ(0)⟩(3.7)

So, calculating the star product amounts to evaluating a three point function on
the unit disk.
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The action 3.1 has been quantized with the BV method. Choosing the Siegel
gauge, i.e. imposing the condition b0|Ψ⟩ = 0 to fix the enormous gauge symmetry
(3.4), the kinetic term becomes particularly simple and can be easily inverted to
produce a free propagator b0L

−1
0 . This allows one to define the perturbative se-

ries and relevant Feynman rules. 0-th and 1-st order amplitudes for tachyons have
been computed. Putting the external legs on shell, they reproduce the correspond-
ing first quantized amplitudes, in particular the Veneziano amplitude. This is an
important check, but of course now one has an unambiguous way to compute off-
shell expressions for the amplitudes, virtually to any perturbative order. What is
more important, one should remember that the first quantized amplitudes are inte-
grated over the moduli space of the appropriate Riemann surfaces corresponding to
the given perturbative order. It is far from obvious a priori that the perturbative
OSFT reproduces the same procedure. However one of the most remarkable results
in this context was the proof that it fully ‘covers’ the moduli space of Riemann sur-
faces and it does it only once. This is to be contrasted with the analogous problem
in closed string field theory, where a third order interaction is not sufficient to cover
the full moduli space, and one is obliged to introduce higher order vertices.

In conclusion the OSFT introduced in this section reproduces the results of
first quantized string theory. Its added value with respect to the latter is not only
that it allows us to compute off-shell amplitudes, but especially that it puts us in
the condition to tackle nonperturbative problems. The first and up to now most
remarkable result of SFT is the treatment of tachyon condensation.

4. The tachyon condensation

Following the rules of the previous section it is possible in favorable cases to ex-
plicitly compute the action (3.1). For instance, in the low energy limit, where the
string field may be assumed to take the form (3.2), the action becomes an integrated
function F of an infinite series of local polynomials (kinetic and potential terms) of
the fields involved in (3.2) To limit the number of terms one has to limit once again
the gigantic BRST symmetry of OSFT, by choosing a gauge, which is usually the
Feynman–Siegel gauge: this means that we limit ourselves to the states that satisfy
the condition: b0|Ψ⟩ = 0

Still the action with all the infinite sets of fields contained in Ψ remains unwieldy.
As it turns out, it makes sense to limit the number of fields in Ψ, provided we insert
all the fields up to a certain level. This is called level truncation and turns out to
be an excellent approximation and regularization scheme in SFT. Let us see this
in more detail for a string field which includes only the tachyon ϕ(x). The action
turns out to be

S(0,0) =
1

g2o

∫
d26x

(
−1

2
∂µϕ∂

µϕ+
1

2
ϕ2 − 1

3
β3ϕ̃3

)
(4.1)

where β = 3
√
3

4 is a recurrent number in SFT. One can see the kinetic term and the
‘wrong’ mass term for the tachyon. The fields appearing in the interaction term
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carry a tilde. This means

ϕ̃(x) = e(ln β)∂µ∂
µ

ϕ(x)

Incidentally, the fact that the interaction is formulated in terms of tilded fields is
a manifestation of the strong (exponential) convergence properties of string theory
in the UV.

Let us now consider the potential and study its minimum. We should remember
that this theory is supposed to represent the open strings attached to a space–filling
D–brane, the D25–brane. In the CFT language such configurations are described
by boundary CFT’s.

Let us concentrate on the D25–brane and evaluate the total energy of the system
brane + string modes. The brane has its intrinsic energy, whose density is the
tension τ , which in our conventional units (α′ = 1), is given by τ = 1

2π2g2o
. The

string modes are represented by the action and, in a static situation, their total
energy is given by − the action itself. We precisely wish to study this system in the
vacuum. Lorentz invariance requires that only scalars can acquire a VEV. Therefore
in (4.1) one must set all the derivatives to 0. Setting ⟨ϕ⟩ = t, what remains of the
action (divided by the total volume) can be written in terms of the function u(t) as
follows

− S

V
≡ τ u(t) = 2π2

(
−1

2
t2 +

1

3
β3t3

)
(4.2)

This is the total tachyon potential energy density extracted from the action.

The total energy of the system will be given by the sum of (4.2) and the D25–
brane tension

U(t) = τ(1 + u(t))(4.3)

This potential is cubic, it goes to +∞ for positive large t and to −∞ for negative
large t and it has a local maximum and and a local minimum, which are easily
determined. The former is at t = 0, the latter is given by

t = t0 =
1

β3
, u(t) ≈ −0.684(4.4)

Of course this is a first approximation result. Considering higher level scalar
fields (there are infinite many of them) the minimum will be modified. The numeri-
cal evaluations performed within the level truncation scheme indicate that the true
minimum of the potential corresponds to u = −1, i.e. U = 0. This coincides with
the first conjecture by Sen.

In order to describe the physics of tachyon condensation Sen [8] formulated three
conjectures. The first claims that at the minimum of the potential the theory must
be stable, so the energy of the space-filling brane must compensate exactly the
energy of the strings. The second conjecture concerns the features of the tachyon
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condensation vacuum: in this vacuum there cannot be open string modes, that is
it is the vacuum of an entirely different system, that of closed strings. The third
conjecture is a consequence of this statement: one should be able to find in the new
vacuum the physics of closed string theory.

The numerical results mentioned above were the first evidence that first Sen’s
conjecture is correct. Also the other conjectures met support from numerical meth-
ods or via cousin theories, such as BCFT. The turning point in this field came in
2005 with the first analytic tachyon vacuum solution found by Schnabl [10].

5. The analytic tachyon vacuum solution

The equation of motion derived from (3.1) is

QΨ+Ψ ∗Ψ = 0(5.1)

Its first analytic solution, representing the tachyon vacuum, was found by Martin
Schnabl [10]. It allowed to prove Sen’s first and second conjectures[5]. In order
to describe it some amount of formalism is inevitable. The progress was actually
allowed by an improvement in the SFT formalism, made possible by a simple change
of variable: z → z̃ = arctan z. It allows us to introduce objects like

L0 = L0 +
∞∑
k=1

2(−1)k+1

4k2 − 1
L2k, K1 = L1 + L−1

B0 = b0 +
∞∑
k=1

2(−1)k+1

4k2 − 1
b2k, B1 = b1 + b−1

and

BL1 =
1

2
B1 +

1

π

(
B0 + B†

0

)
KL

1 =
1

2
K1 +

1

π

(
L0 + L†

0

)
where c(z), b(z) are the ghost fields. All this, at first sight, seems to be a use-
less complication. However applying these operators to the identity state |I⟩ with
respect to the star product:

K =
π

2
KL

1 |I⟩, B =
π

2
BL1 |I⟩, c = c

(
1

2

)
|I⟩,(5.2)

we obtain a remarkably simple algebra

[K,B] = 0, [K, c] = c∂c, {B, c} = 1, {B, ∂c} = 0(5.3)

where the product is understood to be the star product and 1 represents |I⟩. In
this algebra Q operates as follows

QB = K, Qc = c∂c(5.4)
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Instead of writing down the original Schnabl’s solution, we will show next an
interesting variant of Schnabl’s first solution, proposed by T.Erler and M.Schnabl[6],
which fully exploit the above algebra and lends itself to be generalized to lump
solutions. In terms of this algebra with operator, the new solution[6], is given by

ψ0 =
1

1 +K
c(1 +K)Bc = c− 1

1 +K
Bc∂c,(5.5)

The energy of this solution turns out to be the correct one (1st conjecture)

E = − S

V
=

1

g2oV

(
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,Ψ ⋆Ψ⟩

)
= − 1

2π2g20
(5.6)

It is also possible to define a homotopy operator A = B
K+1 , which satisfies the

property QA = 1, where

Qψ ≡ Qψ +Ψ0 ⋆ ψ − (−1)|ψ|ψ ⋆Ψ0(5.7)

is the BRST operator at the tachyon vacuum. This implies that the cohomology
around the tachyon vacuum is trivial (2nd conjecture), since

Qψ = 0 −→ Q(A ⋆ ψ) = (QA}) ⋆ ψ −A ⋆ (Qψ) = ψ

6. The third conjecture and the lump solutions

The third conjecture predicts in particular the existence of lower dimensional soli-
tonic solutions or lumps, interpreted as Dp–branes, with p < 25. These solutions
bring along the breaking of translational symmetry and background independence.
The evidence for the existence of such solutions collected in the past years is over-
whelming. It has been possible to find them with approximate methods or with
exact methods in related theories. In the sequel I will present a recently proposed
explicit example of analytic lump solution in OSFT.

6.1. Analytic lump solutions

In a recent paper[1], a general method has been proposed to obtain new exact ana-
lytic solutions in open string field theory, and in particular solutions that describe
inhomogeneous tachyon condensation. The method consists in translating an exact
renormalization group (RG) flow generated in a two–dimensional world–sheet the-
ory by a relevant operator, into the language of OSFT. The so-constructed solution
is a deformation of the Erler-Schnabl solution described above. It has been shown
in [1] that, if the operator has suitable properties, the solution will describe tachyon
condensation in specific space directions, thus representing the condensation of a
lower dimensional brane. In the following, after describing the general method, we
will focus on a particular solution, generated by an exact RG flow first analyzed by
Witten[12]. On the basis of the analysis carried out in the framework of 2D CFT
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in [7], we expect it to describe a D24-brane, with the correct ratio of tension with
respect to the starting D25 brane.

Let us see first the general recipe to construct such kind of lump solutions. To
start with we enlarge the K,B, c algebra by adding a (relevant) matter operator

ϕ = ϕ

(
1

2

)
|I⟩.(6.1)

with the properties

[c, ϕ] = 0, [B,ϕ] = 0, [K,ϕ] = ∂ϕ, Qϕ = c∂ϕ+ ∂cδϕ.(6.2)

It can be easily proven that

ψϕ = cϕ− 1

K + ϕ
(ϕ− δϕ)Bc∂c(6.3)

does indeed satisfy (formally, see below) the OSFT equation of motion

Qψϕ + ψϕψϕ = 0(6.4)

It is clear that (6.3) is a deformation of the Erler–Schnabl solution, which can be
recovered for ϕ = 1.

After some algebraic manipulations one can show that

Qψϕ

B

K + ϕ
= Q

B

K + ϕ
+

{
ψϕ,

B

K + ϕ

}
= 1.

So, unless the string field B
K+ϕ is singular, it defines a homotopy operator and

the solution has trivial cohomology, which is the defining property of the tachyon
vacuum [5]. On the other hand, in order for the solution to be well defined, the
quantity 1

K+ϕ (ϕ−δϕ) should be well defined. Moreover, in order to be able to show

that (6.3) satisfies the equation of motion, one needs K + ϕ to be invertible.

In full generality we thus have a new nontrivial solution if

1. 1
K+ϕ is singular, but

2. 1
K+ϕ (ϕ− δϕ) is regular and

3. 1
K+ϕ (K + ϕ) = 1

These conditions seem to be hard to satisfy: for instance, K + ϕ may not be in-
vertible, one needs a regularization. It is indeed so without adequate specifications.
This problem was discussed in [2, 4], where it was shown that the right framework
is distribution theory, which guarantees not only regularity of the solution but also
its ’non-triviality’, in the sense that if these conditions are satisfied, it cannot fall
in the same class as the ES tachyon vacuum solution.
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For concreteness we parametrize the worldsheet RG flow, referred to above, with
a parameter u, where u = 0 represents the UV and u = ∞ the IR, and label ϕ by
ϕu, with ϕu=0 = 0. Then we require for ϕu the following properties under the
coordinate rescaling ft(z) =

z
t

ft ◦ ϕu(z) =
1

t
ϕtu

(z
t

)
.(6.5)

We will consider in the sequel a specific relevant operator ϕu and the correspond-
ing SFT solution. This operator generates an exact RG flow studied by Witten in
[12], see also [7], and is based on the operator (defined in the cylinder CT of width
T in the arctan frame)

ϕu(s) = u(X2(s) + 2 lnu+ 2A)(6.6)

where A is a constant. On the unit disk D we have

ϕu(θ) = u(X2(θ) + 2 ln
Tu

2π
+ 2A)(6.7)

If we set

gA(u) = ⟨e
− 1

2π

∫ 4π
0

dθ u

(
X2(θ)+2 ln u

2π+2A

)
⟩D

we get

gA(u) = Z(2u)e−2u(ln u
2π+A)(6.8)

where Z(u) is the partition function of the system on the unit disk computed by[12].
Requiring finiteness for u→ ∞ one gets A = γ − 1 + ln 4π, which implies

gA(u) ≡ g(u) =
1

2
√
π

√
2uΓ(2u)e2u(1−ln(2u)), lim

u→∞
g(u) = 1(6.9)

Moreover, as it turns out, ϕu − δϕu = u∂uϕu(s)

The ϕu just introduced satisfies all the requested properties. According to [7],
the corresponding RG flow in BCFT reproduces the correct ratio of tension between
D25 and D24 branes. Consequently ψu ≡ ψϕu is expected to represent a D24 brane
solution.

In SFT the most important gauge invariant quantity is of course the energy.
Therefore in order to make sure that ψu ≡ ψϕu is the expected solution we must
prove that its energy equals a D24 brane energy.

The energy expression for the lump solution was determined in [1] by evaluating a
three–point function on the cylinder CT . It equals − 1

6 times the following expression

⟨ψuψuψu⟩ = −
∫ ∞

0

dt1dt2dt3E0(t1, t2, t3)u3g(uT )

{(
− ∂2uT g(uT )

g(uT )

)3
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+
1

2

(
− ∂2uT g(uT )

g(uT )

)(
G2

2uT (
2πt1
T

) +G2
2uT (

2π(t1 + t2)

T
) +G2

2uT (
2πt2
T

)
)

+G2uT (
2πt1
T

)G2uT (
2π(t1 + t2)

T
)G2uT (

2πt2
T

)

}
(6.10)

Here T = t1 + t2 + t3 and g(u) is as above while Gu(θ) represents the correlator on
the boundary, first determined by Witten[12]:

Gu(θ) =
1

u
+ 2

∞∑
k=1

cos(kθ)

k + u

Finally E0(t1, t2, t3) represents the ghost three–point function in CT .

E0(t1, t2, t3) = ⟨Bc∂c(t1 + t2)∂c(t1)∂c(0)⟩CT
= − 4

π
sin

πt1
T

sin
π(t1 + t2)

T
sin

πt2
T

A remarkable property of (6.10) is that it does not depend on u. In fact u can be
absorbed in a redefinition of variables ti → uti, i = 1, 2, 3, and disappears from the
expression.

The integral in (6.10) is well defined in the IR (s very large, setting s = 2uT )
but has an UV (s ≈ 0) singularity, which must be subtracted away. Once this done,
the expression (6.10) can be numerically computed, the result being ≈ 0.069. This
is not the expected result, but this is not surprising, for the result depends on the
UV subtraction we have made. Therefore we cannot assign to it any physical sig-
nificance. To get a meaningful result we must return to the very meaning of third
Sen’s conjecture, which says that the lump solution is a solution of the theory on the
tachyon condensation vacuum. Therefore we must measure the energy of our solu-
tion with respect to the tachyon condensation vacuum. Simultaneously the resulting
energy must be a subtraction-independent quantity because only to a subtraction-
independent quantity can a physical meaning be assigned. Both requirements have
been satisfied in [2] in the following way.

First a new solution to the EOM, depending on a parameter ε, has been intro-
duced

ψεu = c(ϕu + ε)− 1

K + ϕu + ε
(ϕu + ε− δϕu)Bc∂c.(6.11)

and it has been shown that it is gauge equivalent to the tachyon vacuum solution, its
energy (after the same UV subtraction as in the previous case) being (numerically)
0. Then, using it, a solution to the EOM at the tachyon condensation vacuum has
been obtained. The equation of motion at the tachyon vacuum is

QΦ+ ΦΦ = 0, where QΦ = QΦ+ ψεuΦ+ Φψεu.(6.12)

One can easily show that

Φ0 = ψu − ψεu(6.13)
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is a solution to (6.12). The action at the tachyon vacuum is −1
2 ⟨QΦ,Φ⟩− 1

3 ⟨Φ,ΦΦ⟩.
Thus the energy of Φ0 is

E[Φ0] = −1

6
⟨Φ0,Φ0Φ0⟩

= −1

6

[
⟨ψu, ψuψu⟩ − ⟨ψεu, ψεuψεu⟩ − 3⟨ψεu, ψuψu⟩+ 3⟨ψu, ψεuψεu⟩

]
.(6.14)

The UV subtractions necessary for each correlator at the RHS of this equation
are always the same, therefore they cancel out and the final result is subtraction-
independent. A final bonus of this procedure is that the final result can be derived
purely analytically and E[Φ0] turns out to be precisely the D24-brane energy. With
the conventions of [2], this is

TD24 =
1

2π2
(6.15)

In [3] the same result was extended to Dp-brane lump solutions for any p.

7. Comments

The three conjectures formulated by Ashok Sen about fifteen years ago have been
demonstrated beyond doubt in the framework of Witten’s OSFT. This is certainly
a remarkable result, but from the point of view of OSFT it is only a beginning.
The correctness of the three conjectures confirms that open string theory knows
about closed string theory. As anticipated in the introduction this was somehow
expected. Even the first quantized open string theory contains at one loop informa-
tion about the closed string spectrum. However what we have learnt from OSFT is
much richer information. Even at the classical level (tree level of the perturbative
expansion) [9], provided we consider exact analytic solutions (which correspond to
specific boundary CFT’s, i.e. full expansions in the α′ parameter), we can get infor-
mation about closed string theory. The question is now how rich and complete this
information is. The example of AdS/CFT suggests that open and closed strings are
two different description of the same underlying physics. On the other hand, the
study of string field theory seems to suggest that there is some asymmetry between
the two descriptions. If field theory is the right language for physics the open string
description is favored. OSFT seems to respond to the best expectations and the
exciting questions we are left with at the end of this exposition are: how far can
we go in the description of closed string theory by means of open strings? is there
a way, for instance, to represent black holes in the open string theory language?
Even further, can we recognize in this language bosonized solutions representing
fermions?
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