PHYSICAL ACTIVITY AS A PRE-ANALYTICAL FACTOR AFFECTING LABORATORY TEST RESULTS

Aleksandra Isaković, Goran Janković, Sanja Mazić, Željka Stanojević, Dejan Nešić

DOI Number
https://doi.org/10.22190/FUPES180925025I
First page
281
Last page
296

Abstract


It is known that physical activity undoubtedly exhibits positive effects, decreasing the incidence of many chronic diseases. But, at present, physical activity is consider a pre-analytical factor/error related to the sampling process. Namely, different types of physical activity as well as its different intensity may influence a broad array of laboratory variables. The amount of extracellular release and clearance from blood of most of these biomarkers is markedly influenced by the biological characteristics of the molecule(s), level of training, type, intensity and duration of exercise, and time of recovery after training. It is therefore noteworthy to have the anamnestic information about these specific characteristics of physical activity and to understand the "physiologic" effects of exercise on laboratory results and when the threshold to pathological effects has been crossed. There are a lot of research data about the influence of physical activity on laboratory test results, but the accessible results are scattered and inconsistent since variations in type, duration, and intensity of exercise, sample size, and biological, behavioral, and experimental variables are not always adequately controlled. In this study we put an effort to summarize the most often changes in laboratory results that occur as a result of physical activity and to explain these changes in accordance with their biochemical, physiological and metabolic features.


Keywords

exercise, biomarkers, metabolism, serum enzymes, laboratory test results

Full Text:

PDF

References


Akiboye, R.D., & Sharma, D.M. (2018). Haematuria in sport: A review. European Urology Focus, S2405-4569, https://doi.org/ 10.1016/j.euf.2018.02.008.

Albright, A., Franz, M., Hornsby, G., Kriska, A., Marrero, D., Ullrich, I., & Verity, L.S. (2000). American College of Sports Medicine position stand. Exercise and type 2 diabetes. Medicine & Science in Sports & Exercise, 32 (7), 1345–1360.

Aldemir, H., & Kiliç, N. (2005). The effect of time of day and exercise on platelet functions and platelet-neutrophil aggregates in healthy male subjects. Molecular and Cellular Biochemistry, 280 (1-2), 119-124.

Banfi, G., Lombardi, G., Colombini, A., & Lippi, G. (2010). Bone metabolism markers in sports medicine. Sports Medicine, 40 (8), 697-714.

Bellinghieri, G., Savica, V., & Santoro, D. (2008). Renal alterations during exercise. Journal of Renal Nutrition, 18 (1), 158-164.

Booth, F.W., Roberts, C.K., & Laye, M.J. (2012). Lack of exercise is a major cause of chronic diseases. Comprehensive Physiology, 2 (2), 1143-1211.

Brancaccio, P., Maffulli, N., & Limongelli, F.M. (2007). Creatine kinase monitoring in sport medicine. British Medical Bulletin, 81 (1), 209-230.

Bweir, S., Al-Jarrah, M., Almalty, A.M., Maayah, M., Smirnova, I.V., Novikova, L., & Stehno-Bittel, L. (2009). Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes. Diabetology & Metabolic Syndrome, 1 (1), 27.

Calles-Escandon, J., Cunningham, J.J., Snyder, P., Jacob, R., Huszar, G., Loke, J., & Felig, P. (1984). Influence of exercise on urea, creatinine, and 3-methylhistidine excretion in normal human subjects. American Journal of Physiology, (246), E334-E338.

Calvert, L.D., Singh, S.J., Greenhaff, P.L., Morgan, M.D., & Steiner, M.C. (2008). The plasma ammonia response to cycle exercise in COPD. European Respiratory Journal, 31, 751–758.

Carraro, F., Hartl, W.H., Stuart, C.A., Layman, D.K., Jahoor, F., & Wolfe, R.R. (1990). Whole body and plasma protein synthesis in exercise and recovery in human subjects. American Journal of Physiology, 258 (5), E821-E831

Caspersen, C.J., Powell, K.E., & Christenson, G.M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126–131.

Crespo, R., Revilla, M., Villa, L.F., Usabiaga, J., Leibar, X., & Rico, H. (1999). Transient dissociation of bone metabolism induced by high performance exercise: a study in elite marathon runners. Calcified Tissue International, 64 (4), 287-290.

Delaney, P.M., Price, C.P., & Lamb, J.E. (2001). Kidney function and disease in Tietz fundamentals of clinical chemistry. Ed Saunders, pp. 631-642

Drid, P., Vujkov, S., Drapšin, M., Casals-Vazquez, C., Čuk, S., Stojanović, M.D. (2015). Lactate concentration in Greco-roman wrestlers before and after final matches. Facta Universitatis Series Physical Education and Sport, 13 (2), 161-166.

Duncan, J.J., Gordon, N.F., & Scott, C.B. (1991). Women walking for health and fitness. How much is enough? Journal of the American Medical Association, 266 (233), 3295-3299.

Durstine, J.L., & Haskell, W.L. (1994). Effects of exercise training on plasma lipids and lipoproteins. Exercise and Sports Science Reviews, 22 (1), 477-522.

Eriksson, J., Taimela, S., Eriksson, K., Parviainen, S., Peltonen, J., & Kujala, U. (1997). Resistance training in the treatment of non-insulin-dependent diabetes mellitus. International Journal of Sports Medicine, 18 (4), 242-246.

Febbraio, M.A., & Pedersen, B.K. (2002). Muscle-derived interleukin-6: Mechanisms for activation and possible biological roles. FASEB J, 16 (11), 1335–1347.

Finsterer, J. (2012). Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskeletal Disorders, 13 (1), 218.

Foran, S.E., Lewandrowski K.B., & Kratz, A. (2003). Effects of exercise on laboratory test results. Laboratory Medicine, 34 (10), 736-742.

Fujimura, R., Ashizawa, N., Watanabe, M., Mukai, N., Amagai, H., Fukubayashi, T., Hayashi, K., Tokuyama, K., & Suzuki, M. (1997). Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. Journal of Bone and Mineral Research, 12(4), 656-662.

Hammouda, O., Chtourou, H., Chahed, H., Ferchichi, S., Chaouachi, A., Kallel, C., Miled, A., Chamari, K., & Souissi, N. (2012). High intensity exercise affects diurnal variation of some biological markers in trained subjects. International Journal of Sports Medicine, 33(11), 886-891.

Heathcote, K.L., Wilson, M.P., Quest, D.W., & Wilson, T.W. (2009). Prevalence and duration of exercise induced albuminuria in healthy people. Clinical and Investigative Medicine, (32), E261-E265.

Heber, S., & Volf, I. (2015). Effects of physical (in) activity on platelet function. BioMed Research International, 2015, 165078.

Holmes, F.C., Hunt, J.J., & Sevier, T.L. (2003). Renal injury in sport. Current Sports Medicine Reports, 2 (2), 103-109.

Huh, J.Y. (2018). The role of exercise-induced myokines in regulating metabolism. Archives of Pharmacal Research, (41), 14-29.

Jansen, T., & Daiber, A. (2012). Direct antioxidant properties of bilirubin and biliverdin. Is there a role for biliverdin reductase? Frontiers in Pharmacology, 3, 30.

Kasapis, C., & Thompson, P.D. (2005). The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. Journal of the American College of Cardiology, 45(10), 1563-1569.

Kenney, K., Landau, M.E., Gonzalez, R. S., Hundertmark, J., O'brien, K., & Campbell, W.W. (2012). Serum creatine kinase after exercise: drawing the line between physiological response and exertional rhabdomyolysis. Muscle & Nerve, 45(3), 356-362.

Kratz, A., Lewandrowski, K.B., Siegel, A.J., Chun, K.Y., Flood, J.G., Van Cott, E.M., & Lee-Lewandrowski, E. (2002). Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. American Journal of Clinical Pathology, 118(6), 856-863.

Lakka, T.A., & Salonen, J.T. (1992). Physical activity and serum lipids: a cross-sectional population study in eastern Finnish men. American Journal of Epidemiology, 136(7), 806-818.

Latham, J., Campbell, D., & Nichols, W. (2008). How much can exercise raise creatine kinase level—and does it matter? Clinical Inquiries, 545-547.

Leclerc, S., Allard, C., Talbot, J., Gauvin, R., & Bouchard, C. (1985). High density lipoprotein cholesterol, habitual physical activity and physical fitness. Atherosclerosis, 57 (1), 43-51.

Lindheim, S.R., Notelovitz, M., Feldman, E.B., Larsen, S., Khan, F.Y., & Lobo, R.A. (1994). The independent effects of exercise and estrogen on lipids and lipoproteins in postmenopausal women. Obstetrics and Gynecology, 83(2), 167-172.

Lofthus, D.M., Stevens, S.R., Armstrong, P.W., Granger, C.B., & Mahaffey, K.W. (2012). Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coronary Artery Disease, 23(1), 22-30.

Lombardi, G., Ricci, C., & Banfi, G. (2011). Effects of winter swimming on haematological parameters. Biochemia Medica, 21(1), 71-78.

Mairbäurl, H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, (4), 332.

Mann, S., Beedie, C., & Jimenez, A. (2014). Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Medicine, 44(2), 211-221.

Margonis, K., Fatouros, I. G., Jamurtas, A. Z., Nikolaidis, M. G., Douroudos, I., Chatzinikolaou, A., et al. (2007). Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radical Biology and Medicine, 43(6), 901-910.

McCarthy, D.A., & Dale, M.M. (1988). The leucocytosis of exercise. A review and model. Sports Medicine, 6, 333-363.

Mohseni, M., Silvers, S., McNeil, R., Diehl, N., Vadeboncoeur, T., Taylor, W., et al. (2011). Prevalence of hyponatremia, renal dysfunction, and other electrolyte abnormalities among runners before and after completing a marathon or half marathon. Sports Health, 3(2), 145-151.

Mooradian, A.D. (2009). Dyslipidemia in type 2 diabetes mellitus. Nature Reviews Endocrinology, 5(3), 150-159.

Mythili, S., & Malathi, N. (2015). Diagnostic markers of acute myocardial infarction. Biomedical Reports, 3(6), 743-748.

Najafipour, F., Mobasseri, M., Yavari, A., Nadrian, H., Aliasgarzadeh, A., Mashinchi Abbasi, N., Niafar, M., Houshyar Gharamaleki, J., & Sadra, V. (2017). Effect of regular exercise training on changes in HbA1c, BMI and VO2max among patients with type 2 diabetes mellitus: an 8-year trial. BMJ Open Diabetes Research & Care, (5), e000414

Newhouse, I.J., & Clement, D.B. (1988). Iron status in athletes. Sports Medicine, 5(6), 337-352.

Nicklas, B.J., You, T., & Pahor, M. (2005). Behavioural treatments for chronic systemic inflammation: effects of dietary weight loss and exercise training. Canadian Medical Association Journal, 172(9), 1199-1209.

O'Hanlon, R., Wilson, M., Wage, R., Smith, G., Alpendurada, D.F., Wong, J., Dahl, A., Oxborough, D., Godfrey, R., Sharma, S., Roughton, M., George, K., Pennell, J.D., Whyte, G., & Prasad, K.S. (2010). Research Troponin release following endurance exercise: is inflammation the cause? A cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 12 (1), 38.

Panteghini, M., & Bais, R. (2001). Enzymes. In Tietz fundamentals of clinical chemistry, pp. 322-330, Ed Saunders

Pedersen, B.K. (2007). IL-6 signaling in exercise and disease. Biochemical Society Transactions, 35, 1295–1297.

Pettersson, J., Hindorf, U., Persson, P., Bengtsson, T., Malmqvist, U., Werkström, V., & Ekelund, M. (2008). Muscular exercise can cause highly pathological liver function tests in healthy men. British Journal of Clinical Pharmacology, 65(2), 253-259.

Pinto, A., Di Raimondo. D., Tuttolomondo, A., Buttà, C., Milio, G., & Licata, G. (2012). Effects of physical exercise on inflammatory markers of atherosclerosis. Current Pharmaceutical Design, 18(28), 4326-4349.

Poortmans, J.R., & Francaux, M. (1999). Long-term oral creatine supplementation does not impair renal function in healthy athletes. Medicine and Science in Sports and Exercise, 31(8), 1108-1110.

Puglisi, M.J., & Fernandez, M.L. (2008). Modulation of C-reactive protein, tumor necrosis factor-α, and adiponectin by diet, exercise, and weight loss. The Journal of Nutrition, 138(12), 2293-2296.

Richter, E.A., & Hargreaves, M. (2013). Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews, 93(3), 993-1017.

Robergs, R.A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502-R516.

Rudberg, A., Magnusson, P., Larsson, L., & Joborn, H. (2000). Serum isoforms of bone alkaline phosphatase increase during physical exercise in women. Calcified Tissue International, 66(5), 342-347.

Saeed, F., Pavan, P.N., Devaki, K., Mahendrakar, L., & Holley, J.L.(2012). Exercise-induced proteinuria? The Journal of Family Practice, 61, 23-26.

Saito, Y., Kusaka, Y., & Shimada, M. (2003). Effects of exercise intensity on circulating leukocyte subpopulations. Environmental Health and Preventive Medicine, 8(1), 18-22.

Sanchis-Gomar, F., & Lippi, G. (2014). Physical activity - an important preanalytical variable. Biochemia Medica, 24(1), 68-79.

Santiago, M.C., Leon, A.S., & Serfass, R.C. (1995). Failure of 40 weeks of brisk walking to alter blood lipids in normolipidemic women. Canadian Journal of Applied Physiology, 20, 417-428.

Sawka, M.N., Convertino, V.A., Eichner, E.R., Schnieder, S.M., & Young, A.J. (2000). Blood volume: importance and adaptations to exercise training environmental stresses and trauma/sickness. Medicine & Science in Sports & Exercise, 32, 332–348.

Schmidt, W., & Prommer, N. (2008). Effects of various training modalities on blood volume. Scandinavian Journal of Medicine & Science in Sports, 18, 57-69.

Sedlak, T.W., Saleh, M., Higginson, D.S., Paul, B.D., Juluri, K.R., & Snyder, S.H. (2009). Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proceedings of the National Academy of Sciences, 106(13), 5171-5176.

Seip, R.L., Moulin, P., Cocke, T., Tall, A., Kohrt, W.M., Mankowitz, K., Semenkovich, C.F., Ostlund, R., & Schonfeld, G. (1993). Exercise training decreases plasma cholesteryl ester transfer protein. Arteriosclerosis, 13, 1359-1367.

Shaskey, D.J., & Green, G.A. (2000). Sports haematology. Sports Medicine, 29(1), 27-38.

Shave, R., Baggish, A., George, K., Wood, M., Scharhag, J., Whyte, G., Gaze, D., & Thompson, P.D. (2010). Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. Journal of the American College of Cardiology, 56(3), 169-176.

Sjogren, H.M. (2007). Transaminase levels and vigorous exercise. Gastroenterology & Hepatology, 3, 913-914.

Skurvydas, A., Streckis, V., Mickeviciene, D., & Kamandulis, S. (2006). Effect of age on metabolic fatigue and on indirect symptoms of skeletal muscle damage after stretch-shortening exercise. Journal of Sports Medicine and Physical Fitness, 46(3), 431-441.

Smith, J.E., Garbutt, G., Lopes, P., & Pedoe, D.T. (2004). Effects of prolonged strenuous exercise (marathon running) on biochemical and haematological markers used in the investigation of patients in the emergency department. British Journal of Sports Medicine, 38(3), 292-294.

Spate-Douglass, T., & Keyser, R.E. (1999). Exercise intensity: its effect on the high-density lipoprotein profile. Archives of Physical Medicine and Rehabilitation, 80(6), 691-695.

Sporiš G., Vlahović T., Trajković N., Milanović Z., Madić D. (2016). Haematological and iron status following a soccer match. Facta Universitatis Series Physical Education and Sport, (14), 289-295.

Speranza, L., Grilli, A., Patruno, A., Franceschelli, S., Felzani, G., Pesce, M., Vinciguerra, I., De Lutiis, M.A., & Felaco, M. (2007). Journal of Biological Regulators and Homeostatic Agents, 21(1/2), 23-29.

Suzuki, K., Nakaji, S., Yamada, M., Liu, Q., Kurakake, S., Okamura, N., Kumae, T., Umeda, T., & Sugawara K. (2003). Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Medicine and Science in Sports and Exercise, 35(2), 348-355.

Swift, D.L., Johannsen, N.M., Earnest, C.P., Blair, S.N., & Church, T.S. (2012). The effect of different doses of aerobic exercise training on total bilirubin levels. Medicine and Science in Sports and Exercise, 44(4), 569-574.

Taes, Y.E., Delanghe, J.R., Wuyts, B., van de Voorde, J., & Lameire, N.H. (2003). Creatine supplementation does not affect kidney function in an animal model with pre-existing renal failure. Nephrology Dialysis Transplantation, 18(2), 258-264.

Vanholder, R., Sever, S.M., Erek, E., & Lameire, N. (2000). Rhabdomyolysis. Journal of the American Society of Nephrology, 11(8), 1553-1561.

Vella, C.A., Kravitz, L., & Janot, J.M. (2001). A Review of the impact of exercise on cholesterol levels. Idea Health & Fitness Source, 1-5.

Yavari, A., NajafiPour, F., Asgharzadeh, A.A., Niafr, M., Mobasseri, M., & Nikou Kheslat, S. (2011). Effects of aerobic training, resistance and combination on glycemic control and cardiovascular risk factors in type 2 diabetic patients. Medical Journal of Tabriz University of Medical Sciences, 33(4), 82-91.

Weibrecht, K., Dayno, M., Darling, C., & Bird, S.B. (2010). Liver aminotransferases are elevated with rhabdomyolysis in the absence of significant liver injury. Journal of Medical Toxicology, 6(3), 294-300.

Weight, L.M., Alexander, D., & Jacobs, P. (1991). Strenuous exercise: analogous to the acute-phase response? Clinical Science, 81(5), 677-683.

Ziberna, L., Martelanc, M., Franko, M., & Passamonti, S. (2016). Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Scientific Reports, 6, 29240.

Zimmerman, J.L., & Shen, M.C. (2013). Rhabdomyolysis. Chest, 144 (3), 1058-1065.




DOI: https://doi.org/10.22190/FUPES180925025I

Refbacks

  • There are currently no refbacks.


ISSN   1451-740X (Print)

ISSN   2406-0496 (Online)