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Abstract. This paper considers the effects of the ambient temperature and unducted air 

flow on the voltage generated by a thermoelectric generator used to power wireless sensor 

network node. Structure of the node is simulated using a fully coupled numerical electro--

thermal model with convective correlations. Results show that the effect of the ambient 

temperature is negligible as long as the temperature difference between the hot surface of 

the node and the ambient is maintained. For natural convection, voltage dependence on 

the temperature difference can be determined from the open circuit conditions and this 

can be used to approximate the load conditions. For forced convection, an increase rate of 

the generated voltage is governed by the thermal resistance of the heatsink and 

characteristic parameters of the thermoelectric generator.   
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1. INTRODUCTION 

Wireless sensor network (WSN) nodes powered by harvesting energy from their 

environment have been a subject of extensive research in the past years. Electricity required 

to power the nodes is typically obtained by converting solar, mechanical, RF, or thermal 

energy, therefore harvesters can be roughly grouped as photovoltaic, piezoelectric, RF and 

thermoelectric, respectively [1]. Energy harvesting eliminates the need for batteries in WSN 

nodes, thus making them long-lived and suitable for widespread deployment. Such features 

are particularly desirable for nodes used in systems for environmental monitoring and 

protection. Among a variety of applications, energy harvesters are employed in the 

monitoring of air [2], water [3], soil [4, 5], wildlife [6], exhaust gas pipes [7, 8], etc.  

One major drawback of WSN nodes powered by energy harvesting is time varying and 

limited amount of the environmental energy. This requires a careful design of energy 

conversion and storage circuits as well as optimized management of the power consumption. 
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The main design goal is to ensure that the node is always supplied by enough power to 

transmit monitored data, send an alarm, or receive a command. Although various WSN nodes 

have distinctive internal features, their efficiency is governed primarily by the harvester 

circuitry, which in turn depends not only on the type of the harvesting but also on the overall 

environmental conditions. 

This paper considers thermal energy harvesting WSN node used as a data logger for 

temperature monitoring. The energy conversion is performed by thermoelectric generator 

(TEG), which utilizes Seebeck effect, i.e. the temperature difference between the hot and 

cold junctions of two materials to produce voltage. In our previous works, we have shown 

how aluminum core printed circuit boards (PCBs) can be used to improve performances 

of the WSN node [9], and established guidelines for choosing an appropriate TEG [10–

12]. However, these considerations were limited to the thermal steady-state case, where 

there is a fixed ambient temperature, and no air flow over the WSN node. In this paper 

we extend the analysis by taking into account variations of the ambient temperature and 

airflow, inevitably present in the real operating environment. Specifically, we investigate 

their effects on the voltage generated by the TEG. 

2. SYSTEM DESCRIPTION 

The basic elements of the thermal energy harvesting wireless sensor network node are 

shown in Fig. 1. The commercial thermoelectric module is exploited as a thermoelectric 

generator to provide power for the node. Two of the external sides of the TEG are kept at 

different temperatures by exposing it to a heat source at the hot side and enabling the heat 

release to the ambient at the cold side. 

 

Fig. 1 Illustration of main blocks and powering principle of the thermoelectric WSN node. 

The temperature difference between the TEG's sides of  10C produces Seebeck 

voltage of a few tens of mV. This is insufficient for the operation of electronic devices, 

and the generated Seebeck voltage is introduced into the power management module, 
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which enables continuous supply of the data management module. Excess energy is 

routed to the storage, typically super capacitor, so it could be used when the temperature 

difference become too low for efficient energy conversion. The data management module 

consists of sensors, microcontroller and RF transceiver for data acquisition, processing 

and transmission, respectively. 

Commercial TEGs are available as compact devices, in the form of an array of 

thermocouples, sandwiched between the two ceramic plates, as illustrated in Fig 2(a) and 

(b). Materials used for the thermocouples are n- and p-type semiconductor alloys 

characterized by Seebeck coefficients of the opposite sign. These pillar-like shaped 

materials are called legs, and copper electrodes are used for their interconnection. The 

electrical connection of the thermocouples is serial, while the thermal is parallel. In the 

case analyzed here, the TEG is incorporated into a WSN node between two aluminum–

core printed circuit boards (PCBs), the sensor is located on the bottom one, while the data 

management module is on the inner side of the top one. Thermally insulating foam fills 

the gap between the plates. In order to maintain a temperature difference across the TEG, 

a heatsink is mounted onto the top of the structure, as shown in Fig. 2(c). Although a 

detailed description of the node construction can be found in [9] the analyzed structure 

has a couple of differences. Many applications in environmental monitoring require 

outdoor use, so the WSN node should be sealed. Also, in outdoor conditions, temperature 

reversal between the plates is likely to occur and the power management module should 

be designed using auto-polarity circuits [13]. 

 
(a) (b) (c) 

Fig. 2 Structure of: (a) thermocouple; (b) thermoelectric generator;  

(c) wireless sensor network node. 

When exposed to the temperature difference across its sides, the TEG generates 

Seebeck voltage: 

                 . (1) 

Equation (1) takes into account characteristic parameters of the TEG: number of 

thermocouples  , overall Seebeck coefficient for the thermocouple    , and correction 

coefficient   due to a finite thermal conductance of the ceramic plates [14]. If the bottom side 

of the TEG is kept on the temperature      and the top side on the temperature      , then: 

                 . (2) 
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The power management module appears as a load to the TEG, thus forming an 

electrical circuit with load current   , as shown in Fig. 3. In addition, the TEG is 

characterized by its internal electrical resistance: 

      
    

 
   (3) 

where         is the electric resistivity of semiconductor alloys, while   and A are 

the length and cross sectional area of the thermocouple leg, respectively (Fig. 2). Proper 

operation of the WSN node requires a stable load voltage   , the value of which needs to 

be determined. 

 

Fig. 3 Equivalent electric circuit of a TEG with a load. 

Several analytical models with different level of complexity are available for the 

thermal and electrical characterization of the TEG [14–18]. Although proven to be 

accurate for standalone devices, the models cannot take into account complex thermal 

conditions when the TEG is built into the WSN node [10, 11]. The complexity of the 

analysis increases even further by including non-stationary thermal effects, like air flow 

over the WSN node. Therefore, a three-dimensional (3D) numerical simulation is used in 

order to estimate dependence of the load voltage on these parameters. 

3. RESULTS AND DISCUSSION 

For the structure of the WSN node from Fig. 2(c), convection from external surfaces to 

the ambient was identified as a dominant mechanism of the heat release (transfer). 

According to the Newton's law of cooling, rate of the heat transfer by convection is [19, 20]: 

     ̅          , (4) 

where    is the area of the heat transfer surface,  ̅  is the average convection heat transfer 

coefficient over the surface, while    and    are temperatures of the surface and of the 

fluid (ambient) far away from the surface, respectivelly. Convection can be simulated 

either by employing computational fluid dynamics (CFD) or by making an assumption of 

how the heat will leave the volumes of interest. The CFD approach [21] automatically 

calculates values of every heat transfer coefficient as a function of the corresponding 

surface temperature, and is known to give the most accurate results. However, for 

complex geometries it is computationally taxing because it requires an additional fluid 

domain and external coupling between the CFD and the thermal–electrical solvers, and 
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also may be difficult to set up without an extensive knowledge of the underlying numeric. 

A simpler approach, adopted in this paper, is to assume average values of the heat 

transfer coefficients (also called film coefficients) and assign them to the appropriate 

surfaces as initial boundary conditions in thermal–electric simulation. By knowing the 

shape (plate, cylinder), orientation (horizontal, vertical, inclined), and dimension of the 

surface, values of the coefficients can be calculated using convective correlations widely 

available in the literature [19, 20, 22]. These correlations are developed for both free and 

forced convection, where the latter accounts for fluid velocity. Note that in either case 

material properties are evaluated at film temperature             . 

In this study, three commercial TEGs with parameters listed in Table 1 were 

considered. 

Table 1 Characteristic parameters of the considered TEGs. 

Parameter Manufacturer part No. 

 

MCPE- 

071-10-15 

(TEG1) 

CP 10,31,08 

(TEG2) 

CP 08,31,06 

(TEG3) 

Maximum temperature difference       (°C) 72 67 67 

Maximum cooling power (W) 16.5 5.3 4.5 

Maximum current at       (A) 3.2 2.5 2.1 

Maximum voltage at       (V) 8.8 3.8 3.7 

Number of thermocouples   71 31 31 

External dimensions L ×W× H (mm) 20×20×3.8 15×15×3.8 12×12×3.3 

Area of the TEG (mm2) 400 225 144 

Thermocouple leg cross sectional area   (mm2) 1 1 0.64 

Thermocouple leg length   (mm) 1.5 2.0 1.5 

Seebeck coefficient     (𝜇V/°C) 396 378 378 

Temperature coefficient of      (1/°C) 1.9 ·10-3 

Thermocouple thermal conductivity   (W/m°C) 1.5 1.7 1.7 

Thermocouple resistivity   (𝜇Ωm) 11.4 10.6 10.6 

Internal electrical resistance      (Ω) 2.43 1.31 1.54 

A simulation was carried out in ANSYS by numerical solving of thermal and electric 

conduction equations [23]. Material properties with appropriate values were assigned to 

each part of the WSN node, as described in [10]. Joule heating, Seebeck, Peltier, and 

Thomson effects are taken into account simultaneously, while the radiation effect is 

neglected [24, 25]. A hot plate is used as a heat source, so the outer side of the bottom 

PCB is kept at a constant temperature. For a specified hot plate temperature    and 

ambient temperature   , simulation using heat transfer coefficients for free convection 

gives distributions of temperature within the WSN node and the electric potential inside 

the TEG cells, as shown in Fig. 4.  
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(a) 

 
(b) 

Fig. 4 Free convection: (a) Temperature distribution within the WSN node with TEG2; 

(b) Electric potential distribution in the TEG cells; Th = 45
o
C, Ta = 30

o
C, IL = 12 mA. 

Temperature difference       defined by (2) can be extracted from the distribution 

shown in Fig. 4(a), while the generated Seebeck voltage    is observed from Fig. 4(b) as a 

potential difference between the outermost electrical contacts depicted in Fig. 2. Because 

the WSN node requires            mV for stable and reliable operation, the load current 

IL is fixed at 12 mA, the value extracted from the datasheet of the power management 

circuit [26]. The WSN node construction allows temperature distribution within the top 

PCB and heatsink to be uniform (Fig. 4(a)). Due to the similarities of the materials, heat 

transfer coefficients have almost the same dependence on the film temperature, thus leaving 

the difference in their dependencies only on the characteristic lengths of various heatsink 

and top PCB surfaces [20]. Therefore, from the user’s point of view, it can be more 

convenient to observe temperature difference between the hot plate and the ambient [12]: 

          , (5) 

rather than extracting      . The design of experiment for free convection is composed 

using    and    as parameters. The ambient temperature is kept within the range 10–35℃ 

and the hot plate temperature is adjusted to obtain temperature difference     in the 

range of 10–35℃. Response surface for TEG2 is shown in Fig. 5, while qualitatively 

similar results are obtained for the other two TEGs. 
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Fig. 5 Load voltage vs. ambient temperature and temperature difference      

from (5) for WSN node with TEG2 under free convection;       mA. 

It can be observed that the load voltage dependence on the ambient temperature is 

very weak (relative change     in the considered range of   ). This is due to the fact 

that    is governed primarily by the temperature difference between the hot and cold 

sides of the TEG, and not by the ambient temperature.  On the other hand, dependence on 

    is pronounced and nearly linear. If the simulation is carried out for the open circuit 

condition (    ), then voltage    can be correlated to     as: 

     ̅   , (6) 

where  ̅ is a proportionality factor averaged over the considered temperature range. 

From the circuit shown in Fig. 3, (1) and (5) the load voltage is: 

     ̅          . (7) 

For the temperature ranges considered here, one can neglect to a first approximation 

temperature dependence of  , and constant values for      given in Tab. 1 may be used. For 

the known load current, and  ̅ determined by couple of measurements or simulations,   can 

be predicted from (7). For example, for the WSN node with TEG2 the value  ̅        mV/°C 

is extracted. Using this value and         , the approximate values of    calculated on the 

basis of (7) deviate from those obtained by the simulation by a maximum of 10%. 

For forced convection, in addition to    and   , air velocity is changed from 0.5 m/s, 

up to 3 m/s (light breeze). Unducted air flow along parallel plates of the heatsink fins is 

assumed, as shown in Fig. 6. 

 

Fig. 6 Thermal image showing heatsink and the top PCB under unducted air flow. 
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Obtained dependencies of the load voltage on the air velocity for WSN node with 

TEG1 and TEG2 are shown in Figs. 7 and 8, illustrating expected increase of the load 

voltage due to forced convection. 

 
 

Fig. 7 Forced convection: Load voltage vs. air velocity  

for the WSN node with TEG1; Th = 45
o
C, IL = 12 mA. 

 

Fig. 8 Forced convection: Load voltage vs. air velocity  

for the WSN node with TEG2; Th = 45
o
C, IL = 12 mA. 
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While qualitative dependencies are similar, quantitative values of the load voltage are 

higher for TEG1, primarily due to larger number of thermocouples. Note that results for 

TEG3 are very close to those obtained for TEG2 due to similarity of their characteristic 

parameters, as listed in Tab. 1. Data from Fig. 8 can be rearranged in order to get better 

insight into quantitative changes of the load voltage under forced convection, relative to 

free convection, i.e.: 

     
           

     
          (8) 

where       and       are load voltages obtained for forced and free convection (     m/s), 

respectively. As illustrated in Fig. 9 increase of the load voltage is more pronounced for lower 

   . However, for a given,     both Figs. 8 and 9 show that a major benefit is given to air 

velocity at about 1 m/s, while for higher velocities     tends to saturate. This is primarily due 

to the thermal resistance of the heatsink        , which exhibits a steeper decrease for 

velocities up to 1 m/s than for those above [27]. 

 
Fig. 9 Load voltage change under forced convection relative to free convection  

vs.     for the WSN node with      °C,       mA. 

A comparison between simulated and experimental values of VL is shown in Tab. 2. 

Disagreements are due to the fact that simulation does not take into account surface 

roughness and incomplete fulfilment of the thermal insulation between the PCBs, and 

also leakage currents, which inevitably occur in the real circuit. 
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Table 2 Simulated vs. experimental data for the WSN node with TEG2  

(unducted flow,       °C,       mA). 

  (m/s)  0 1.25 2.5 

  (mV) 
simulation 75 110 122 

experiment 70 100 110 

It is of practical interest to know the minimal temperature difference          

required to supply the WSN node at a fixed load condition, as shown in Fig. 10. 

 
Fig. 10 Minimal     required to produce               at      °C and 

       mA for WSN nodes with TEG1 and TEG2. 

In general,          decreases as air velocity   increases, and qualitatively follows 

dependence of         on  : 

                       . (9) 

However, although heatsink manufacturers specify           , proportionality factor in 

(9) can not be determined analytically because it also depends on the characteristic parameters 

of the TEG (Tab. 1). Another difficulty arises from the fact that the heatsink base is 

effectively extended by the top PCB, thus leading to the deviation from the specified 

           dependence. Therefore,         can be viewed as a part of the overall thermal 

resistance of the node, which would depend on many physical and geometrical parameters. 

For the WSN node considered here,          at 1 m/s will be reduced by approximately one--

third relative to the value for stagnant air. This is data of practical importance, because such a 

condition is most likely to occur in a real operating environment. 
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4. CONCLUSION 

In this paper, the influence of ambient conditions on the performance of the 

thermoelectric wireless sensor node was investigated. Free and forced convection cases 

were analyzed by using three–dimensional fully coupled electro--thermal simulation of 

the complete node, by applying convective correlations describing heat transfer between 

the node and the ambient. It was found that the change of ambient temperature within the 

range 10–35°C has minor effect on the voltage VL generated by the thermoelectric 

generator inside the node, as long as the temperature difference between the hot side of 

the node and the ambient Ta is maintained. It is shown that it is more feasible to observe 

Ta rather than the temperature difference between the sides of the thermoelectric 

generator. For free convection, a simple, open–circuit based approximation for estimation 

of    as a function of Ta is proposed. For forced convection, quantitative changes of VL 

for air velocities in the range 0.5–3 m/s are obtained for three thermoelectric generators. 

It has been established that the value of VL increases as the thermal resistance of the node 

decreases, as compared to the case of natural convection. However, due to the complexity 

of the structure, quantitative changes are obtained by the simulation. 
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UTICAJ AMBIJENTALNIH USLOVA  

NA PERFORMANSE TERMOELEKTRIČNOG ČVORA  

BEŽIČNE SENZORSKE MREŽE 

Rad analizira uticaj temperature ambijenta i brzine strujanja vazduha na vrednost napona 

termoelektričnog generatora koji napaja čvor bežične senzorske mreže. Struktura čvora je 

numerički simulirana korišćenjem spregnutog elektro–termalnog modela i konvektivnih korelacija. 

Rezultati pokazuju da je uticaj temperature ambijenta zanemarljiv sve dok se razlika temperatura 

između tople i hladne strane čvora održava konstantnom. Kada nema strujanja vazduha zavisnost 

generisanog napona od razlike temperatura se može odrediti iz uslova otvorenog kola, a kasnije 

aproksimativno primeniti i za kolo sa opterećenjem. Kada postoji strujanje vazduha, ova zavisnost 

je određena termičkom otpornošću hladnjaka i karakterističnim parametrima termoelektričnog 

generatora. 

Kljuĉne reĉi: termoelektrični generator, čvor bežične senzorske mreže, prikupljanje energije 


