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Abstract. This paper discusses the gravity-fed hydraulic system, which consists of the 

upper reservoir, the lower reservoir, the pipeline, and valves. To achieve simpler and 

more efficient protection of a system against water hammer, it is advisable to establish 

conditions in which the pressure rises as little as possible during transient regimes 

without using any protective equipment. The discussion focuses on the pressure rise 

caused by different valve types: butterfly, needle, and ball valves, as well as two valve 

closure intervals – 20 and 40 seconds. The systems considered have nominal diameters 

of DN 300 and DN 600. The problem was studied using a simulation of unsteady flow 

regimes of hydraulic transport. The obtained results regarding the maximum pressure 

rise due to water hammer were used to select the most satisfactory control valve for the 

considered hydraulic system. 
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1. INTRODUCTION 

Every sudden flow change in a hydraulic system causes unsteady flow regimes. One 

of the unsteady, or transient, regimes is the water hammer. The phenomenon occurs due 

to a sudden change of the flow rate in a hydraulic system, which in turn leads to a change 

in pressure, which can be considerable under specific conditions. More elaborately, water 

hammer occurs when the fluid flow begins or stops suddenly or is forced to suddenly 

change direction accompanied by a change of intensity. Unsteady fluid flows have been 

studied ever since humans first directed the flow of water to accommodate their needs. 

Since then, for over a hundred years, the phenomenon has been the topic of numerous 
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theoretical studies and practical considerations [1]. The first successful water hammer 

research was presented by the Italian engineer Lorenzo Allievi [2]. 

The water hammer effect is a common everyday occurrence, but people are not always 

aware of it. In most homes it happens daily, for instance when suddenly opening or closing 

various water taps. It also occurs in industries that utilize water, in water supply pipelines, 

in mine drainage systems, oil pipes, etc. 

The practice of pressurized system maintenance has shown that the number of failures 

due to the water hammer effect is significant [3], although these cases are often not 

documented or analyzed in much detail. In addition, the repairs of the damage caused by 

water hammer require substantial material assets. Such failures, apart from having a 

damaging effect to the hydraulic system itself, can also exert a considerable negative 

environmental impact, especially when contaminant fluids are being transported. These are 

the chief reasons to find the way to mitigate the water hammer effect, i.e. to provide quality 

system operation control, where the changes in the hydraulic system are controlled, since 

unsteady flow regimes cannot be completely avoided. 

Researchers have shown interest in finding methods to reduce the damaging effects of 

water hammer since the first time the effects were observed. Those methods usually involve 

the installation of additional devices in the hydraulic system. The majority of those safety 

devices are intended to maintain the pressure at an almost constant level at specified 

locations within the system or to maintain lower pressure than a preset value [4], [5], [6]. 

The criteria commonly prioritized when selecting safety devices include their efficiency, 

reliability, cost, and frequency of maintenance over a specified period [7]. There is a wide 

variety of safety mechanisms, but most of them can be classified into one of the following 

categories [8]: pipeline diameter increase; selection of valve type and valve opening/closing 

laws; pump inertia increase; surge tanks (regular, throttled, one way, etc.); water pressure 

vessels; pressure relief valves; check valves; bypass lines; etc. 

Researchers are still working round the clock to analyze the existing and create new 

methods of protecting hydraulic systems from the water hammer effect. Thus, Shawn 

Batterton [9] used simulations to establish that the volumetric amount of air in a system is a 

relevant factor for water hammer control. Elbashir and Kwame [10] determined that 

stepwise valve closures can mitigate water hammer more prominently than linear valve 

closure. A number of authors have shown that a pump with a high inertia can also 

significantly reduce the effect of water hammer. Tan Wee Choon et al. [11] proved that 

prevention using the installation of a bypass line with a check valve reduces the water 

hammer effect, whereby pressure rise is reduced by 33.33%. Nashat A. Ali et al. [12] 

analyzed different water hammer protection methods for a water supply network. They 

showed that the use of surge tanks, pressure tanks, and bypass lines with a check valve can 

efficiently protect pipelines from water hammer. Goran Gjetvaj and Martina Tadić [13] 

studied the contribution of elastic forces on pressure increase in pipelines protected by a 

pressure tank (air vessel). Andrey Ragalev et al. [14] focused on analyzing the impact of 

undissolved air containing liquid in order to diminish the water hammer effect. For this 

purpose, they proposed injection of air into the pipe, whereby the optimal volume 

concentration of air does not exceed 5%. This protection method works best when applied 

to pressurized systems for wastewater drainage. Apoloniusz Kondura [15] showed that the 

water hammer effect depends greatly on the characteristics of butterfly valve closure. 

Yanfei Kon et al. [16] studied a water hammer protection method for mine drainage. They 

proposed a system that is based on adjusting the speed of the hydraulic control valve 
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jumper. Wuyi Wan and Boran Zhang [17] investigated the water hammer protection of a 

water supply pipeline by means of an intelligent self-controlled surge tank. Using 

simulations and analyses, they proved that this surge tank has improved applicability over 

conventional tanks. 

Previous studies unequivocally demonstrate that every pressurized pipeline needs to 

have a safety system against the water hammer effect. Typically, all water hammer safety 

systems for pipelines increase the propagation time of water hammer waves [18]. 

Every designer of pressurized hydraulic systems has to pay special attention to the 

selection of components. They should be selected so as to minimize the intensity of water 

hammer when no safety equipment is installed. This is understandable, since it is easier to 

protect a system against lower water hammer intensities. The designer is able to choose 

some of the components, but some of them are defined by the terms of reference, conditions 

in the field, and the laws. One component designers can choose the pipeline shutoff valve, a 

wide array of which is available on the market. In order to define the recommendations for 

pressurized hydraulic system design, this paper examines three valve types. The goal was to 

determine which valve type causes the minimal water hammer effect. The study was 

performed using numerical simulations of unsteady operational regimes of hydraulic 

systems. 

2. ANALYZED VALVE TYPES 

Out of a vast variety of valves available on the market, this study considers the following 

types: butterfly, needle, and ball valves. Before the examination of these valves, brief 

descriptions of the three valve types are given below. Figure 1 shows a typical butterfly valve 

and Figures 2a and 2b show flow coefficient diagrams of these valves with a 300 mm and 600 

mm diameter, respectively, obtained through the analysis of data collected from different 

manufacturers.  

 

Fig. 1 Typical design and construction of butterfly valves 
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(a) (b) 

Fig. 2 Butterfly valve flow coefficient depending on the degree of opening  

Butterfly valves can initiate, stop, or limit the flow in a system. They are compactly 

built, with high control capability, they can be installed in any position, and they are easy 

to maintain. Due to such properties, they are widely used in drinking water production, 

preparation, and distribution systems, energy systems, irrigation systems, chemical and 

process industries, shipbuilding, etc. 

 

 

(a) (b) 

Fig. 3 (a) Needle valve, (b) Head loss coefficient depending on the degree of opening 

A typical needle (piston ring) valve is shown in Figure 3a, while its head loss coefficient 

ζ is shown in Figure 3b. These valves are mainly used when the pressure/flow needs to be 

reduced and controlled reliably. They are used to initiate, stop, and regulate the flow in a 

pipeline. 

Their construction allows them to precisely control the volumetric flow of liquids 

passing through the valve. 
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Since most manufacturers possess the head loss coefficient data for these valves, we 

first created the diagrams of head loss coefficients as functions of the degree of opening. 

For these diagrams for coefficient ζ of valves with nominal diameters DN300 and DN600, 

the formula: 

 
2

V

D
K 0.0396


 (1) 

where D is the pipe diameter [mm] is used to determine the values of the flow 

coefficient KV [m
3
/h], which are required for the numerical simulations of water hammer 

in the pipeline. 

The flow coefficient KV [m
3
/h] for all considered valve types is defined with the 

following expression: 

 VK Q
1000 p





 (2) 

where: Q [m
3
/h]– flow, Δp [bar]– valve pressure drop, and ρ [kg/m

3
] – density of the fluid. 

One of the variants of a ball valve is shown in Figure 4 in three positions, whereas the 

table 1 represents CV coefficient values for these valves.  

   

(a) (b) (c) 

Fig. 4 Ball valve: (a) fully closed; (b) 50% stroke; (c) fully open 

Ball valves contain a hollow pivoting ball. They are used to initiate, regulate, and stop 

the flow, and are characterized by impermeable and durable sealing, even under very high 

pressures. They are a good choice for pipeline shutoff and control, but their performance 

is lacking in fine control applications. They are also simple to use and easy to maintain. 

The table 1 provides the values for the imperial unit flow coefficient CV, common in 

the Anglo-World. Most of the literature, however, uses the metric flow coefficient KV. 

Flow coefficients CV and KV are defined using the same expression (2), the difference 

being that the Anglo-American literature uses US gallons per minute (gal/min) for flow 

rate, pounds per square inch (psi) for pressure, and kg/dm3 for density. Thus, the relation 

between the two coefficients can be represented as follows: 

 V VC 1.168K  (3) 
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Table 1 Approximate Cv values of ball valves for different degrees of opening  

Approximate CV  values 

Valve Size (mm) 5º 10º 30º 50º 70º Fully Open 

200 61 124 401 859 1.853 6.688 

300 137 280 902 1.934 4.170 19.300 

400 245 497 1.605 3.440 7.414 34.400 

500 382 777 2.508 5.375 11.586 59.900 

600 550 1.119 3.612 7.740 16.683 88.900 

900 1.238 2.517 8.126 17.413 37.535 222.000 

3. METHODOLOGY AND RESULTS 

The simulation of the water hammer that initiates valve closure uses a simple hydraulic 

system, as shown in Figure 6. The system consists of the open upper reservoir (J1), in 

which the water level is 70 m above the water level in the open lower reservoir (J3), the 

valve (J2) at a height of 5 m, a 2000 m long pipe (P1) in front of the valve, and a 25 m 

long pipe (P2) behind the valve. Water temperature is 15°C. 

 

Fig. 6 Hydraulic system 

In practice, valve opening and closure are never instantaneous but unfold over a time 

interval, however short it might be. This study considers closure intervals of 20 and 40 

seconds for all valves. Likewise, simulations for all valves were performed for nominal 

diameters of 300 mm and 600 mm, for the aforementioned closure times; simulations 

were performed only for steel water transport pipes. 

Figures 7, 8, and 9 show the diagrams of water hammer simulation for a DN 300 pipe 

and 20 s valve closure time for the butterfly, needle, and ball valve, respectively. The 

results are combined in Figure 10 for easier comparison. 

Figure 7 reveals that the installation of a butterfly valve with a 20 s closure in the 

hydraulic system shown in Figure 6 causes the pressure rise of Δp = 43.33 bar during 

water hammer. If a needle valve with the same closure time (Fig.8) is installed into the 

hydraulic system, the pressure rise will reach Δp = 30.59 bar during water hammer. 

Finally, a ball valve with a 20 s closure time (Fig.9), the pressure rises to Δp = 29.71 bar 

during water hammer.   
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Fig .7  Pressure change over time  

(butterfly valve, DN 300,20 s) 

Fig. 8 Pressure change over time  

(needle valve, DN 300, 20 s) 

  
Fig. 9 Pressure change over time  

(ball valve, DN 300, 20 s) 

Fig. 10 Pressure change over time  

(all analyzed valve types, DN 300, 20 s) 

For a more compact and efficient representation of the study results, the results obtained 

for the same pipe diameter and the same valve closure interval will be combined in a single 

diagram. Thus, Figure 11 shows the results for a DN 600 pipe with 20 s closure time for all 

three valve types: the water hammer induced pressure rise is Δp = 50 bar with a butterfly 

valve installed,  Δp = 38.82 bar with a needle valve, and  Δp = 33.91 bar with a ball valve. 

The corresponding pressure rises for a smaller pipe diameter are lower, as expected. 

The results presented so far and shown in Figures 10 and 11 lead to a conclusion that, 

barring other limitations, it is best to install a ball valve with a 20 s closure time, because 

it will ensure the lowest pressure rise in the system due to water hammer. 
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Fig.11 Pressure change over time (butterfly, needle, and ball valve, DN 600, 20s) 

Figures 12 and 13 show the pressure envelopes for all valve types considered, with 

pipe diameters DN 300 and DN 600, respectively, and the valve closure time of 20 

seconds. 

  

Fig. 12 Maximum and minimum pressure 

envelopes (for all analyzed valve 

types, DN 300, 20 s) 

Fig. 13 Maximum and minimum pressure 

envelopes (for all analyzed valve 

types, DN 600, 20 s) 

The diagrams clearly indicate that high vacuums occur inside the pipe (minimum 

pressure envelopes either intersect or go below the route of the pipeline), which may 

cause water column separation and yet another water hammer. Naturally, this closure 

time is not allowed, which leads to a conclusion that it is not recommended, although it 

has already been determined that the installation of a 20 s closure ball valve will yield the 

lowest pressure. 

Figures 14 and 15 show the results of water hammer simulation in the considered 

hydraulic system for DN 300 and DN 600 pipe diameters, but this time for a 40 s closure 

time of all analyzed valve types. 
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Fig. 14 Pressure change over time 

(butterfly, needle, and ball 

valve, DN 300, 40 s) 

Fig. 15 Pressure change over time 

(butterfly, needle, and ball 

valve, DN 600, 40 s) 

Figure 14 reveals that installing a butterfly valve with a 40 s closure time in the 

analyzed system with a DN 300 pipe in front of the valve would result in a pressure rise of 

Δp = 18.33 bar during water hammer. Pressure rise with a needle valve is Δp = 15.56 bar, 

while with a needle valve it is Δp = 15.87 bar. Barring other limitations, a needle valve is 

the most suitable option for this particular system, as it will provide the lowest water 

hammer pressure. Figure 15 shows that installing a valve with a 40 s closure time in the 

system, this time with a DN 600 pipe, will result in the following pressure rises: Δp = 

24 bar for a butterfly valve, Δp = 15.88 bar for a needle valve, and Δp = 16.52 bar for a ball 

valve. This pipe diameter also favours the installation of a needle valve. 

Figures 16 and 17 show pressure envelopes for all analyzed valve types with a closure 

time of 40 s, for pipe diameters DN 300 and DN 600, respectively. 

  

Fig. 16 Maximum and minimum pressure 

envelopes (for all analyzed valve 

types, DN 300, 40 s) 

Fig.17 Maximum and minimum pressure 

envelopes (for all analyzed valve 

types, DN 600, 40 s) 
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Both diagrams confirm the previous conclusion that a needle valve is the best option 

for the lowest rise with a 40 s valve closure time. 

The results presented above indicate that the considered hydraulic system would be best 

served by a needle valve with a 40 s closure time. This in turn suggests that designers have 

to consider the specific system and valve closure times in advance. They subsequently need 

to analyze the water-hammer initiated pressure rise and the probability of water column 

separation (case when envelopes of minimal pressure are lower than pipeline elevation) and 

local sub-pressures for each valve option before selecting the right one. 

4. CONCLUSION 

This paper analyzed the performance of different valve types in the specified 

hydraulic system in order to determine the best valve option in terms of pressure 

reduction during water hammer. It was established that valves with a 20 s closure time 

are not recommended for the given system, as they can potentially cause water column 

separation and further instances of water hammer. In case of valves with a 40 s closure 

time, a needle valve was found to be the most suitable for the given system. These 

conclusions pertain to nominal pipe diameters of both 300 mm and 600 mm.  

REFERENCES 

1. Menabrea, L. F., 1885, Note sur les effects de choc de l' eau dans les conduites, C. R. Hedb. Seances 

Acad. Sci. 47, July – Dec., pp. 221-224 
2. Lorenzo Allievi, 1903, Teoria generale del moto pertubato dell’acqua ani tubi in pressione, Ann. Soc. 

Ing. Arch. Italiana (French translation by Allievi 1904 Revue mecanique) 

3. Ilin J. A., 1987, Calculations of water systems, Stroizdat, Moscow (in Russian) 
4. Chaudhry M. H., 1987, Applied hydraulic transient, Second edition Ed., Van Nostrand Reinhold Company 

Inc., New York 

5. Streeter V. L. and Wylie E. B., 1973, Water hammer and surge control, Annual review fluid mechanics, 
6, pp. 57-73 

6. Nabi G., Habib-ur-Rehman, Kashif M. and Tareq M., 2011, Hydraulic transient analysis of surge tanks: 

case study of Satpara and GoldenGol Hydropower projects in Pakistan, Pak. J. Engg. and Apple Sci, 8, 
pp. 34-48 

7. Wylie E. B. and Streeter V. L., 1983, Fluid transients, Corrected edition Ed., Thomson – Shore, Dexter, 

MI, United States of America 
8. Ivetić M.V., 1996, Raĉunska hidraulika Teĉenje u cevima, GraĊevinski fakultet Univerziteta u Beogradu 

9. Batterton S., 2006, Water Hammer: An Analysis of Plumbing Systems, Instruction, and Pump Operation, 

Master thesis, Faculty of the Virginia Polytechnic Institute and State University, Blackburg, Virginia 
10. Mosab A. Magyoub Elbashir, Saumuel Oduro Kwame Amoah, 2007, Hydraulic transient in a pipeline 

using computer model to calculate and simulate transient, Master thesis, Division of Water Resources 

Engineering, Department of Building and Environmental Technology, Lund University, Sweden 
11. Tan Wee Choon, Lim Kheng Aik, Lim Eng Aik, Teoh Thean Hin, 2012, Investigation of Water Hammer 

Effect Through Pipeline System, International Journal on Advanced Science Engineering Information 

Technology, Vol. 2, No. 3, pp. 47-53 
12. Nashat A.Ali., Gamal Abozeid and Moustafa S. Darweesh, 2013, Analysis of different protection 

methods against water hammer on water supply network (Case study – Assiut  city network), Journal 

of Engineering Sciences Assiut University, Faculty of Engineering, Volume 41, No. 6, pp. 2021-2035 

13. Goran Gjetvaj, Martina Tadić, 2014, The effect of water hammer on pressure increases in pipelines 

protected by an air vessel, Tehniĉki vjesnik 21, 3, pp. 479-484 

14. Andrey Rogalev, Anna Kocherova, Ivan Komarov, Ivan Garanin, Galina Kurdiukova, 2015, Ways of 
Protection of Pipeline Systems against Hydraulic Hammer, Contemporary Engineering Sciences, Vol. 8, 

No. 23, pp. 1067-1081 



 Valve Selection for the Purpose of Reducing the Water Hammer Effect in a Pressurized Pipeline 227 

 

15. Apoloniusz Kodura, 2016, An Analysis of the Impact of Valve Closure Time on the Course of Water 

Hammer, Archives of Hydro-Engineering and Environmental Mechanics, Vol. 63, No. 1, pp. 35-45 
16. Yanfei Kou, Jieming Yang and Ziming Kou, 2016, A Water Hammer Protection Method for Mine 

Drainage System Based on Velocity Adjustment of Hydraulic Control Valve, Hindawi Publishing 

Corporation Shock and Vibration, Vol. 2016, Article ID 2346025, 13 pages 
17. Wuyi Wan and Boran Zhang, 2018, Investigation of Water Hammer Protection in Water Supply Pipeline 

System Using an Intelligent Self – Controlled Surge Tank, Energies, Vol.11, (in the press) 

18. Nenad Bolf, 2017, Mjerna i regulacijska tehnika, Kem. Ind. 66 (11-12), pp. 713-715 

IZBOR VENTILA U CILJU SMANJENJA EFEKTA 

HIDRAULIČKOG UDARA U CEVOVODU POD PRITISKOM 

 

U radu se razmatra hidraulički sistem koji se sastoji od gornjeg rezervoara, donjeg rezervoara, 

cevovoda i ventila. Zbog jednostavnije i jeftinije zaštite sistema od hidrauličkog udara dobro je da 

je porast pritiska, pre korišćenja zaštitne opreme, što manji. Razmatra se porast pritiska koji 

izazivaju različite vrste ventila i to leptirasti, igličasti i loptasti kao i dva interval vremena 

zatvaranja ventila 20 i 40 sekundi. Razmatrani su sistemi kod kojih je nominalni prečnik cevi 300 

mm i 600 mm. Problem je izučavan korišćenjem simulacije hidrauličkog udara. Na osnovu 

dobijenih rezultata za maksimalni porast pritiska pri hidrauličkom udaru izvršen je izbor 

najpovoljnijeg ventila za razmatrani hidraulički sistem. 

Kljuĉne reĉi: hidraulički udar, ventil, simulacija, porast pritiska, vreme zatvaranja ventila 

 

 

 


