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Abstract. This paper presents a general case of stressing a rectangular piezoceramic 

cantilever with transversal polarization which is loaded at the free end by a concentrated 

force. Two mutually opposite surfaces of the rectangular cantilever are with electrode 

coatings on which an excitation electric voltage is applied to. By applying the reverse 

method for solving the problems of electroelasticity theory, componential displacements, 

electric potential, specific strains, electric fields and piezoelectric displacements are 

determined for the rectangular piezoceramic cantilever made from PZT4 piezoceramic 

material. 
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1. INTRODUCTION 

In application of mathematical theory of electroelasticity where the subjects of studying 

are different piezoelectric bodies of concrete dimensions versatile tasks and problems can 

appear [1, 2]. In general, depending on what is known, all tasks of the linear theory of 

electroelasticity may be ranked into three groups: body loading (mechanical, electric, or 

combined), conditions on boundary surfaces of the observed body, or displacements of 

points on the surface of the electroelastic piezoelectric body [3]. 

Regarding the choice of unknown variables, there are three mathematical methods to 

solve the problems of the theory of electroelasticity: direct method, reverse method and 

semi-reverse method. Beside analytical and numerical methods, experimental examinations 

of stress and strain state of stressed electroelastic body take a significant place. 
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Piezoelectric cantilever beams have received considerable attention for vibration-to-

electric energy conversion [4, 5, 6 and 7]. The use of a piezoelectric unimorph cantilever 

allows both electrical actuation and electrical sensing. Cantilever piezoelectric power 

generators are being used because of their high strain and high power output even under 

lower acceleration amplitudes. This paper considers a general case of stressing rectangular 

prismatic piezoceramic cantilever with transversal polarization and electrode coatings on 

the two mutually opposite surfaces z = ±h/2, loaded on the left free end by a concentrated 

force, vector of external loading F


 which is aimed in direction of the axis Oz (Fig. 1). It is 

assumed that electric potential difference 2U0 is applied on electrodes. Furthermore, it is 

also assumed that the effect of the electromechanical characteristics of the electrode 

coatings may be neglected. Coordinate system Oxyz is set at the free end of the cantilever. 

Axes Oy and Oz are main central axes of inertia of the cross section, while axis Ox is 

geometric axis. Axis Oz is directed downwards. 
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Fig. 1 Stressing of the piezoceramic cantilever with transversal polarization and electrodes 

2. FUNDAMENTAL EQUATIONS 

According to the hypothesis of Журавский, for a cantilever loaded at the free end by 

a concentrated force F


, there are only normal stress σx in axial direction and tangential 

stress τxz in plane of the cross section, aimed in direction of the force F


 [8]. Volume 

forces are neglected, so the stresses are given by stress tensor matrix: 
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Since the dimensions of the cross section of the rectangular cantilever are small in 

regard to the length l ((b/h)<<1, (b/l)<<1), this stress state can be considered as planar, in 

plane Oxz. From strength of materials it is known that componential stresses for this case 

of stressing are 8: 
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while componential mechanical stresses on the sides y=±b/2 have values: 
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In agreement with the hypothesis of Журавский, componential mechanical stresses 

are equal to zero in the internal points of the piezoceramic rectangular cantilever. Also, 

according to this hypothesis, an assumption is introduced that componential displacements of 

the body points u and w are independent from coordinate y, i.e.: 

 ,, )( zxuu     )( , zxvv   (4) 

For a piezoceramic cantilever with transversal or longitudinal polarization an additional 

assumption is introduced that the component of the piezoelectric displacement vector in 

direction of axis Oy is equal to zero: 

 0yD  (5) 

therefore, the function of electrostatic potential ψ is independent from coordinate y:  

 )( , zx   (6) 

Boundary conditions on the sides z=±h/2 are expressed in the following way: 
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On the surface x=0, stand following integral conditions:  
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Conditions for the fixed end of the cantilever for the frontal surface x=l are:  
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The proposed task is solved by application of reverse method, such that components u and 

w of the displacement vector s


 and electric potential ψ are assumed in a polynomial form:  
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Equations of electrostatics in absence of free electric charges, i.e. simplified Maxwell’s 

partial differential equations are [3]:  



126 I. JOVANOVIĆ, LJ. PERIĆ, U. JOVANOVIĆ, D. MANĈIĆ 

 

0
yx z

DD D
divD

x y z

E grad i j k
x y z

  


 
   

  

   
      

   

 (11) 

Cauchy’s kinematic equations are:  
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By substituting the assumed solutions (10) into expressions (11) and (12), 

respectively, following expressions are obtained:  
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Expressions for specific strains (dilatations and slides) and components of the 

piezoelectric displacement vector are [1]: 
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where: Dx, Dy, Dz are components of the piezoelectric displacement vector in C/m
2
; 

EEEEE

44,33,13,12,11   are coefficients of elastic power at given electric field in m
2
/N; b31, 

b15, b33 are coordinates of piezomodulus tensor in C/N; 

11d , 


33d  are dielectric constant 

(dielectric permeability) at given mechanical stress in F/m.  



 Stressing Issue of a Piezoceramic Cantilever with Electrode Coatings and Transversal Polarization 127 

Thirteen unknown coefficients: a0, a1, a2, a3, a4, b0, b1, b2, b3, b4, c1, c2, c3, which enter 

into expressions (10) and (13), have to be determined in order to fulfill the system of 

equations of electroelasticity (14) and boundary conditions (7), (8) and (9):  
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From the system of equations (15), (16) and (17) unknown coefficients are determined as:  
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Coefficients 
2

31k , 
2

sk  and 
2

k  are called coefficients of electromechanical static relations.  

By introducing the obtained values for coefficients (18) into expressions (10) and 

(13), one obtains solutions for: componential displacements of the displacement vector s


, electric potential ψ, specific strains (dilatations εx and εz, and slide yxz), electric fields Ex 

and Ez, and piezoelectric displacements Dx and Dz, for the rectangular prismatic cantilever 

with transversal polarization and electrode coatings on the sides z=±h/2, in the form of:  
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3. NUMERICAL ANALYSIS AND DISCUSSION 

Subject of observation in this paper is stressing of rectangular PZT4 piezoceramic 

cantilever [9], with the following dimensions: b=4.1mm, h=20.1mm and l=30.1mm, 

density ρ=7500kg/m
3
, loaded by the concentrated force (Fig. 1). This material belongs to 

the hexagonal crystal system of crystal class 6mm (C6v), and its material tensors are: 

matrix of elastic power constants tensor, matrix of piezomodulus tensor, and matrix of 

dielectric constants tensor, presented respectively as follows:  
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Based on the obtained solutions (19) and (20), numerical analysis was performed 

using Matlab software package, and biparametric surfaces of spatial state were obtained 

for componential displacement u(x,z,F,U), componential displacement w(x,z,F,U), 

electric potential ψ(x,z,F,U), specific strain – dilatation εx(x,z,F,U), specific strain – 

dilatation εz(x,z,F,U), specific strain – slide yxz(z,F), electric field Ex(z,F), electric field 

Ez(x,z,F,U), and piezoelectric displacement Dx(z,F). Due to the limited space, only few of 

the obtained results are presented in the following text.  

 

Fig. 2 Componential displacement u=u(z, x) 

Fig. 2 shows biparametric surface of the componential displacement u=u(z,x) in function 

of coordinate z and coordinate x, at dominant electric voltage U0. Componential displacement 

has extreme values in points of the surface for z=±h/2 and in points of the frontal surface for 

x=0, while in the points of the fixed end cross section, for x=l, its value is equal to zero. 
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Fig. 3 Componential displacement u=u(z, F) 

 

Fig. 4 Componential displacement w=w(x, F) 

 

Fig. 5 Componential displacement w=w(z, U0) 
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Fig. 6 Electric potential ψ=ψ(x, z) 

 

Fig. 7 Electric potential ψ=ψ(z, F) 

 

Fig. 8 Specific strain εx=εx(z, F) 
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Fig. 9 Specific strain εx=εx(F, U0) 

 

Fig. 10 Specific strain εz=εz(x, z) 

 

Fig. 11 Specific strain εz=εz(z, F) 
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Fig. 12 Specific strain γxz=γxz(z, F) 

 

Fig. 13 Electric field Ex=Ex(F, z) 

 

Fig. 14 Electric field Ez=Ez(x, z)  
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Fig. 15 Electric field Ez=Ez(F, z) 

 

 

Fig. 16 Piezoelectric displacement Dx=Dx(z, F) 

Biparametric surface of the componential displacement u=u(z,F), in function of coordinate 

z and external concentrated force F, is presented on Fig. 3. Componential displacement has 

characteristic spatial surface in shape of a saddle. Extreme values of the componential 

displacement are achieved in surface points for z=±h/2, at maximum values of the 

concentrated force ±F.  

On Fig. 4 biparametric surface of the componential displacement w=w(x,F) in function of 

coordinate x and external concentrated force F is presented. Componential displacement has 

extreme values for maximum intensity of the concentrated force ±F and in points of the 

frontal surface for x=0, while in the points of the fixed end cross section, for x=l, its value is 

equal to zero.  

Biparametric surface of the componential displacement w=w(z,U0), in function of 

coordinate z and electric voltage U0, is shown on Fig. 5.  

Fig. 6 shows biparametric surface of the electric potential ψ=ψ(x,z) in function of 

coordinate x and coordinate z. Electric potential has minimum value in point of frontal surface 

for x=l when z=0. 
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In Fig. 7 biparametric surface of the electric potential ψ=ψ(z,F), in function of coordinate z 

and external concentrated force F is shown. Extreme values of the electric potential are 

obtained in the sectional plane for z=0 and at maximum intensity of the force ±F.  

Fig. 8 illustrates biparametric surface of the specific saddle shaped strain, εx=εx(z,F) in 

function of coordinate z and external concentrated force F.  

Biparametric planar surface of the specific strain εx=εx(F,U0), in function of 

concentrated force F, and electric voltage U0, is shown on Fig. 9.  

On Fig. 10 biparametric surface of the specific strain εz=εz(x,z) in function of 

coordinate x and coordinate z is presented. 

Biparametric surface of the specific strain εz=εz(z,F), in function of coordinate z and 

external concentrated force F, is illustrated in Fig. 11. 

Fig. 12 illustrates biparametric surface of the specific strain yxz=yxz(z,F) in function of 

coordinate z and external concentrated force F. 

Fig. 13 shows biparametric surface of the electric field Ex=Ex(F,z), in function of 

external concentrated force F and coordinate z. 

On Fig. 14 is shown biparametric surface of the electric field Ez=Ez(x,z) in function of 

coordinate x and coordinate z.  

Biparametric saddle shaped surface of the electric field Ez=Ez(F,z), in function of 

external concentrated force F and coordinate z, is presented on Fig. 15.  

Biparametric surface of the piezoelectric displacement Dx=Dx(z,F) in function of 

coordinate z and external concentrated force F is shown on Fig. 16. Extreme values of the 

piezoelectric displacement are obtained in the sectional points for 0z  and at maximum 

values of the concentrated force ±F. 

3. CONCLUSION 

In solving problems of the theory of electroelasticity, for a general case of stressing 

three-dimensional electroelastic deformable bodies, one is faced with great mathematical 

problems. In this paper, the entire qualitative picture of stressed state of the loaded 

rectangular prismatic piezoceramic cantilever with transversal polarization and electrode 

coatings has been observed. For the particular piezoceramic cantilever, different state 

diagrams numerically processed with a PC were determined and presented. This kind of 

analysis enables to predict the characteristics of piezoceramic cantilevers with analyzed 

configuration before their construction. It is expected that the obtained solutions for this 

kind of task from the theory of oscillations can directly be applied in engineering practice.  
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PROBLEM NAPREZANJA PIEZOKERAMIČKIH KONZOLA 

SA ELEKTRODNIM PREVLAKAMA I POPREČNOM 

POLARIZACIJOM 

U ovom radu razmatra se opšti slučaj naprezanja pravougaone prizmatrične piezokeramičke 

konzole sa poprečnom polarizacijom, opterećene na slobodnom kraju koncentrisanom silom. Dve 

međusobno suprotne površi pravougaone konzole su sa elektrodnim prevlakama na koje se dovodi 

električni napon. Primenom obratne metode za rešavanje problema elektroelastične teorije određuju 

se električni potencijal, specifične deformacije, električna polja i piezoelektrični pomeraji za 

pravougaonu piezokeramičnu konzolu napravljenu od PZT4 piezokeramičkog materijala. 

Kljuĉne reĉi: naprezanje, pravougaona piezokeramička konzola, poprečna polarizacija, PZT4 

piezokeramički materijal 


