
FACTA UNIVERSITATIS

Series: Physics, Chemistry and Technology Vol. 14, No 3, 2016, Special Issue, pp. 257 – 274

DOI: 10.2298/FUPCT1603257M

TACHYONIC INFLATION ON (NON-)ARCHIMEDEAN

SPACES †

UDC 535.145:524.8:539.12: 511.225

Milan Milosevic and Goran S. Djordjevic∗

Department of Physics, Faculty of Sciences and Mathematics,
University of Nis, Serbia

Abstract. The relevance of quantum rolling tachyons and corresponding infla-

tion scenario in the frame of the standard, p-adic and adelic cosmology are re-

viewed. The field theory of tachyon matter proposed by Sen in a zero-dimensional

version leads to a number of models with a particle moving under different poten-

tials. We consider quantum propagators of the models, as well as, the vacuum

states and conditions necessary to construct an adelic generalization. In ad-

dition we present inflationary scenarios for some interesting models based on

analytic and numeric calculations. A brief overview of the state of art in the

field and suggestions for further consideration close the paper.

Key words: tachyons, DBI scalar field, inflation, quantum cosmology, nonar-

chimedean spaces

Received June 16th, 2016; accepted August 24th, 2016.
†Acknowledgement: This work was supported by ICTP - SEENET-MTP project PRJ-09

Cosmology and Strings, within the framework of the Southeastern European Network in Math-
ematical and Theoretical Physics, and by the Ministry of Education, Science and Technological
Development of the Republic of Serbia under projects No 176021, No 174020. G. Djordjevic is
thankful to the CERN-TH group for financial support and hospitality during his stay, where a
part of this paper was prepared. We would like to thank N. Bilic, D. Dimitrijevic and Lj. Nesic
for many helpful discussions. G. Djordjevic would like to thank B. Dragovich for an extraordinary
mentorship and help in creating a group of researchers in mathematical physics in Nis. Also he
would like to thank B. Dragovich for long term cooperation and joint research in p-adic quantum
theory and cosmology.

∗E-mail: gorandj@junis.ni.ac.rs

257



258 M. MILOSEVIC, G. S. DJORDJEVIC

1. Introduction

The main task of quantum cosmology [1] is to describe the evolution of the uni-
verse in the very early stage. Usually one takes that the universe is described by
a complex wave function. Since quantum cosmology is related to the Planck scale
phenomena it is logical to consider various geometries (in particular the nonar-
chimedean [2] and noncommutative [3] one) and parametrization of the space-time
coordinates: real, p-adic, or adelic [4].

It is quite natural to consider that in the very early stage of its evolution the
universe was in a quantum state, which is described by a wave function. Concerning
the wave function, we will here maintain the standard point of view: the wave
function takes complex values, but space-time coordinates and matter fields will be
mainly treated in a more complete way to be adelic, i.e. they have real as well as
p-adic properties simultaneously.

There is a quantum gravity uncertainty [5] ∆x while measuring distances around
the Planck length ℓ0 ∼ 10−33cm, which restricts priority of archimedean geometry
based on real numbers and gives rise to employment of nonarchimedean geometry
related to p-adic numbers [6].

Adelic quantum mechanics (AQM) [7] applied to quantum cosmology provides
realization of all the above statements. The successful application of p-adic numbers
and adeles in modern physics started in 1987, in the context of string amplitudes
[6, 8], however for a systematic research in this field it was necessary to formulate
p-adic quantum mechanics [9] and AQM [7].

p-Adic gravity and the wave function of the universe were considered in [10].
An idea of the fluctuating number fields at the Planck scale was introduced and
it was suggested to restrict the Hartle-Hawking [11] proposal to summation only
over algebraic manifolds. Like in AQM, adelic eigenfunction of the universe is a
product of the corresponding eigenfunctions of real and all p-adic cases. p-Adic
wave functions are defined by p-adic generalization of the Hartle-Hawking path
integral proposal.

Supernova Ia observations [13] and cosmic microwave background (CMB) ra-
diation data are suggesting that the expansion of our Universe seems to be in an
accelerated state which is referred to as the “dark energy“ effect. A need for un-
derstanding these new and rather surprising facts, including (cold) “dark matter“,
has motivated numerous authors to reconsider different inflation scenarios. Despite
some evident problems [14] such as insufficiently long period of inflation, tachyon-
driven scenarios [15, 16] remain highly interesting for study.

There have been a number of attempts to understand this description of the
early Universe via (classical) nonlocal cosmological models, first of all via p-adic
inflation models [17, 18], which are represented by nonlocal p-adic string theory
coupled to gravity. Another direction is the investigation of the p-adic inflation
near a maximum of the nonlocal potential. It was found that higher-order derivative
operators can support a (sufficiently) prolonged phase of slow-roll inflation [19].
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The AQM contains ordinary and all p-adic quantum mechanics. As there is not
an appropriate p-adic Schrödinger equation, there is also no p-adic generalization
of the Wheeler-De Witt equation. Instead of the differential approach, Feynman’s
path integral method is exploited [20, 21, 22].

There was a problem with the Hartle-Hawking approach when matter fields
were included into consideration. The solution of this problem was proposed. It
was found that consideration was much more successful when minisuperspace cos-
mological models were treated as models of adelic quantum mechanics [12]. For the
review and detailed discussion see [2, 23]. The nonarchimedean and noncommuta-
tive cosmological quantum models with extra dimensions and an accelerating phase
have been considered, as well as the relevant models in a pure quantum mechanical
context [24].

This review is organized as follows: after the Introduction, in Chapter 2 we give
basic information on “p-adics“ and adeles. Chapter 3 is devoted to p-adic and AQM
as an underlying formalism for the corresponding approach to quantum cosmology,
which is briefly explained in Chapter 4. The next two Chapters are reserved for
actual problems in HEP and cosmology: tachyon dynamics and related inflation.
Following S. Kar’s idea on the possibility of the examination of zero dimensional
theory of the field theory of (real) tachyon matter [25], we consider real and p-adic
aspects of a few relevant models in Chapter 5. The corresponding propagators and
vacuum states for p-adic and adelic tachyons are considered. A recent generalization
of tachyon field dynamics is also briefly reviewed. Classical inflationary processes
for these models are calculated and discussed in Chapter 7. Conclusion and a few
ideas for future research ending the paper. A list of references is quite subjective, it
is neither exhaustive nor complete one, but could be useful for a reader interested
in having a better insight in this field of investigation.

2. p-Adic Numbers and Adeles

The completion of (rational numbers) Q with respect to the standard absolute
value (|·|∞) gives (real numbers) R, and an algebraic extension of R makes (complex
numbers) C. According to the Ostrowski theorem [4] any non-trivial norm on the
field of rational numbers Q is equivalent to the absolute value | · |∞ or to the p-
adic norm | · |p, where p is a prime number. p-Adic norm is the nonarchimedean
(ultrametric) one and for a rational number, 0 6= x ∈ Q, x = pν m

n , 0 6= n, ν,m ∈ Z,
has a value |x|p = p−ν . The completion of Q with respect to the p-adic norm for a
fixed p leads to the corresponding field of p-adic numbers Qp. The completions of
Q with respect to | · |∞ and all | · |p exhaust all possible completions of Q. p-Adic
number x ∈ Qp, in the canonical form, is an infinite expansion

x = pν
∞
∑

i=0

xip
i, x0 6= 0, 0 ≤ xi ≤ p− 1. (1)
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The norm of p-adic number x in (1) is |x|p = p−ν and satisfies not only the triangle
inequality, but also the stronger one

|x+ y|p ≤ max(|x|p, |y|p). (2)

Metric on Qp is defined by dp(x, y) = |x − y|p. This metric is the nonarchimedean
one and the pair (Qp, dp) presents locally compact, topologically complete, separable
and totally disconnected p-adic metric space. p-Adic ball Bν(a) with the centre at
the point a and the radius pν is the set

Bν(a) = {x ∈ Qp : |x− a|p ≤ pν , ν ∈ Z}. (3)

Elementary p-adic functions [26] are given by the series of the same form as in the
real case, with the corresponding domain of convergence.

Real and p-adic numbers are unified in the form of the adeles [27]. An adele is
an infinite sequence

a = (a∞, a2, ..., ap, ...), (4)

where a∞ ∈ Q∞, and ap ∈ Qp, with restriction to ap ∈ Zp ( Zp = {x ∈ Qp : |x|p ≤
1}) for all but a finite set S of primes p. If we introduceA(S) = Q∞× ∏

p∈S

Qp×
∏

p/∈S

Zp

then the space of all adeles is A =
⋃

S

A(S), which is a topological ring. An important

function on A is the additive character χ(x), x ∈ A, which is a continuous and
complex-valued function with basic properties:

|χ(x)|∞ = 1, χ(x+ y) = χ(x)χ(y). (5)

This additive character may be presented as

χ(x) =
∏

υ

χυ(xυ) = exp(−2πix∞)
∏

p

exp(2πi{xp}p), (6)

where υ = ∞, 2, · · · , p, · · ·, and {x}p is the fractional part of the p-adic number x.
Map ϕ : A → C, which has the form

ϕ(x) = ϕ∞(x∞)
∏

p∈S

ϕp(xp)
∏

p6∈S

Ω(| xp |p), (7)

where ϕ∞(x∞) ∈ D(Q∞) is an infinitely differentiable function on Q∞ and falls to
zero faster than any power of | x∞ |∞ as | x∞ |∞→ ∞, ϕp(xp) ∈ D(Qp) is a locally
constant function with compact support, and

Ω(|x|p) =
{

1, |x|p ≤ 1,
0, |x|p > 1,

(8)

is called an elementary function on A. The existence of Ω-function is unavoidable
for a construction of any quantum adelic model. The Fourier transform is

ϕ̃(ξ) =

∫

A

ϕ(x)χ(ξx)dx (9)
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and it maps one-to-one D(A) onto D′(A). It is worth noting that Ω-function is a
counterpart of the Gaussian in the real case, since it is invariant with respect to
the Fourier transform. It is also an important issue for consideration of the ground
state(s) of quantum mechanical systems at high energies, where the use of p-adic
numbers and nonarchimedean geometry in “modelling“ should be fully justified.
About the integrals of the Gauss type over the p-adics and λp arithmetic function
see, for instance, [4].

3. p-Adic and Adelic Quantum Mechanics

In the foundations of standard quantum mechanics (over R) one usually starts
with a representation of the canonical commutation relation

[q̂, k̂] = i~, (10)

where q is a spatial coordinate and k is the corresponding momentum. The canonical
commutation relation in p-adic case can be represented by the Weyl operators (h =
1)

Q̂p(α)ψp(x) = χp(αx)ψp(x), K̂p(β)ψ(x) = ψp(x+ β), (11)

Q̂p(α)K̂p(β) = χp(αβ)K̂p(β)Q̂p(α) (12)

so that (12) states instead of (10) in the p-adic one.

Dynamics of a p-adic quantum model is described by a unitary operator of evo-
lution U(t) without using the Hamiltonian. Instead of that, the evolution operator
has been formulated in terms of its kernel Kt(x, y)

Up(t)ψ(x) =

∫

Qp

Kt(x, y)ψ(y)dy. (13)

In this way [9] p-adic quantum mechanics is given by a triple

(L2(Qp),Wp(zp), Up(tp)). (14)

Keeping in mind that standard quantum mechanics can be also given as the corre-
sponding triple, ordinary and p-adic quantum mechanics can be unified in the form
of AQM [7]

(L2(A),W (z), U(t)). (15)

L2(A) is the Hilbert space on A,W (z) is a unitary representation of the Heisenberg-
Weyl group on L2(A) and U(t) is a unitary representation of the evolution operator
on L2(A). The evolution operator U(t) is defined by

U(t)ψ(x) =

∫

A

Kt(x, y)ψ(y)dy =
∏

v

∫

Qv

K(v)
t (xv, yv)ψ

(v)(yv)dyv. (16)

About the eigenvalue problem for U(t) see [7].
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Note, in accordance with (7) that any adelic eigenfunction has the form

Ψ(x) = Ψ∞(x∞)
∏

p∈S

Ψp(xp)
∏

p6∈S

Ω(| xp |p), x ∈ A, (17)

where Ψ∞ ∈ L2(R), Ψp ∈ L2(Qp). A suitable way to calculate p-adic propagator
Kp(x

′′, t′′;x′, t′) is to use Feynman’s path integral method, i.e.

K(x′′, t′′;x′, t′) =

∫ x′′,t′′

x′,t′
χp

(

− 1

h

∫ t′′

t′
L(q̇, q, t)dt

)

Dq. (18)

It has been evaluated [20, 28] for quadratic Lagrangians in the same way for real
and p-adic case and the following exact general expression is obtained:

Kv(x
′′, t′′;x′, t′) = λv

(

− 1

2h

∂2S̄

∂x′′∂x′

) ∣

∣

∣

∣

1

h

∂2S̄

∂x′′∂x′

∣

∣

∣

∣

1
2

v

χv(−
1

h
S̄(x′′, t′′;x′, t′)), (19)

When one has a system with more than one dimension with uncoupled spatial
coordinates, then the total propagator is the product of the corresponding one-
dimensional propagators. AQMmay be regarded as a starting point for construction
of a more complete theory. In the low-energy limit adelic quantum mechanics
becomes the ordinary one [21].

4. Quantum Cosmology and Adelic Minisuperspace Models

According to the so-called standard cosmological model, in the very beginning
the universe was very small, dense, hot and started to expand very fast. This initial
period of evolution and beginning of inflation should be unavoidably described by
quantum theory. In the path integral approach to quantum cosmology over the
field of real numbers R, the starting point is the idea that the amplitude to go
from one state with intrinsic metric h′ij , and matter configuration φ′ on an initial
hypersurface Σ′, to another state with metric h′′ij , and matter configuration φ′′ on
a final hypersurface Σ′′, is given by a functional integral of the form

〈h′′ij , φ′′,Σ′′|h′ij , φ′,Σ′〉 =
∫

DgµνDΦe−S[gµν ,Φ], (20)

over all four-geometries gµν , and matter configurations Φ, which interpolate between
the initial and final configurations. In this expression S[gµν ,Φ] is an Einstein-Hilbert
action for the gravitational and matter fields. This expression stays valid in the p-
adic case too.

Only as an useful illustration let us present a de Sitter model. In general, the de
Sitter models are the models with the cosmological constant Λ and without matter
fields. The corresponding Einstein-Hilbert action is [29]

S =
1

16πG

∫

M

dDx
√−g(R− 2Λ) +

1

8πG

∫

∂M

dD−1x
√
hK, (21)
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where R is the scalar curvature of D-manifold M , K is the trace of the extrinsic
curvature Kij of the boundary ∂M of the D-manifold M . The general form of the
metric for these models is

ds2 = σ2[−N2dt2 + a2(t)dΩ2
D−1], (22)

where dΩ2
D−1 denotes the metric on the unit (D − 1)-sphere

σD−2 =
8πG

V D−1(D − 1)(D − 2)
,

and V D−1 is the volume of the unit (D− 1)-sphere. In the D = 3 case, this model
is related to the multiple sphere configuration and wormhole solutions. υ-Adic
classical action for this model is [2]

S̄υ(a
′′, N ; a′, 0) =

1

2
√
λ

[

N
√
λ+ λ

(

2a′′a′

sinh(N
√
λ)

− a′2 + a′′2

tanh(N
√
λ)

)]

. (23)

Let us note that a denotes a scale factor and λ denotes here the appropriately
rescaled cosmological constant Λ, i.e. λ = σ2Λ. This model was investigated in
details [23, 30]. For this model, the adelic wave function is in the form

Ψ(a) = Ψ∞(a)
∏

p

Ψp(ap), (24)

where again Ψ∞(a) is a standard wave function and Ψp(ap) are p-adic wave func-
tions. It is very important that only for finite numbers of p, p-adic wave functions
can be different from Ω function which is defined by equation (8). At this place we
indicate a considerable similarity between the action (23) for the de Sitter model
in 2+1 dimensions and the action (54) for the tachyon field in the zero dimensional
model!

It is well known that finding conditions under which quantum-mechanical p-adic
ground state exists in the form of Ω-function and some other eigenfunctions leads
to the desired result and it enables adelization of all exactly soluble minisuperspace
cosmological models. As usual it provides some restrictions on the parameters of
the models. One can suppose that nonarchimedean geometry or “nonarchimedean
phase“ in evolution of the Universe restricts a set of initial conditions and a set of
Lagrangians related to a realistic dynamics of our Universe [31]. The necessary con-
dition for the existence of an adelic model is existence of p-adic quantum-mechanical
ground state Ω(|qα|p), i.e.

∫

|qα′|p≤1

Kp(qα
′′, N ; qα

′, 0)dqα
′ = Ω(|qα′′|p), (25)

and, analogously, if a system is in the state Ω(pν |qα|p). If p-adic ground state
is of the form of the δ-function, one can investigate conditions under which the
corresponding kernel of the model satisfies equation

∫

Qp

Kp(q
′′
α, T ; q

′, 0)δ(pν − |q′α|p)dq′α = χp(ET )δ(p
ν − |q′′α|p), (26)
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with zero energy E = 0. Tachyon fields, inflation and their classical and quantum
aspects are discussed in the next Chapters.

5. Classical and quantum tachyons

As a central part of the paper we consider a model of tachyons based on a DBI
action. This model of non-standard Lagrangian and tachyon-like ”matter” was
proposed by A. Sen [32]. Here the action is given as:

S = −
∫

dD+1xV (T )
√

1 + ηij∂iT∂jT (27)

where η00 = −1 and ηαβ = δαβ, α, β = 1, 2, 3, ..., D, T (x) is the scalar tachyon field
and V (T ) is a tachyon potential. Let conisder a lower dimensional analogues of this
tachyon field theory. The corresponding zero dimensional analogue of a tachyon
field can be obtained by the correspondence: xi → t, T → x, V (T ) → V (x). The
Lagrangian and the action are

Ltach = −V (x)
√

1− ẋ2. (28)

S =

∫

Ltach = −
∫

dtV (x)
√

1− ẋ2. (29)

In the flat space-time background the equation of motion is [33]

ẍ(t)− 1

V (x)

dV

dx
ẋ2(t) = − 1

V (x)

dV

dx
. (30)

There is a ”mathematical” method of transforming a class of non-standard La-
grangians to a canonical form [34, 35]. An improved method based on the classical
canonical transformation (CCT), we present here, with a potential to be very useful
in quantization of the models based on DBI Lagrangians.

5.1. Classical Canonical Transformation

It is well known that the CCT is a change of the phase space variables (x, k) to
the new (x̃, k̃) ones, which preserves the Poisson bracket

{x, k}P.B. = 1 = {x̃, k̃}P.B.. (31)

It was shown that a unitary transformations of coordinate (field) x and conjugate
momenta k at the classical level is

x, k 7→ x̃, k̃, (32)

Htach(x, k) 7→ H̃tach(x̃, k̃), (33)

which also preserves form of Hamilton’s equations [33].



Tachyonic Inflation on (non-)Archimedean Spaces 265

Note the conjugate momenta and (conserved) Hamiltionian are [15]:

k =
∂Ltach

∂ẋ
=

ẋ√
1− ẋ2

V (x),

Htach(x, k) =
√

k2 + V 2(x). (34)

A generating function G, which specifies point canonical transformation is con-
structed

G(x̃, k) = −kF (x̃), (35)

where F (x̃) is an arbitrary function of a new field. The new coordinate and old
momenta can be expressed as

x̃ = F−1(x), k =
1

F ′(x̃)
k̃, (36)

where F−1(x) is an inverse function of F (x̃) and F ′ = dF/dx̃.

Hamilton’s equations become

˙̃x =
1

F ′

k̃
√

k̃2 + F ′2V 2
, (37)

˙̃
k = − 1

F ′2

1
√

k̃2 + F ′2V 2

[

(F ′)2V
dV (F )

dF
− F ′′k2

]

, (38)

while the equation of motion transforms to

¨̃x+

(

F ′′

F ′
− F ′ d lnV (F )

dF

)

˙̃x
2
+

1

F ′

d lnV (F )

dF
= 0. (39)

Note that equation (39) still contains term quadratic with respect to time derivative
of a new coordinate (field) ˙̃x (like (30)). Let us stress that this procedure, at the
classical level, is formally invariant with respect to the choice of the background
number fields R or Qp!

Up to now function F (x̃) was an arbitrary one. If a function 1/V (x) is integrable,
the function F (x̃) can be defined in such a way that the second term in (39) vanishes.
Then, the equation of motion (39) is reduced to

¨̃x+
1

F ′

d lnV (F )

dF
= 0. (40)

Note that equation (40) now stands for the system without term quadratic with
respect to ˙̃x (unlike (30) and (39)).
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5.2. Tachyon Potentials

There are several tachyon potentials motivated by string theory and DBI action.
Let us first consider the potential of the form (λ > 0, β > 0− const)

V (x) =
λ

β coshx
, Ltach =

λ

β coshx

√

1− ẋ2. (41)

The equation of motion (30) for this potential becomes

ẍ(t) + β tanh(βx)ẋ(t)2 = β tanh(βx), (42)

and its general solution is

x(t) =
1

β
arcsinh

[

±
√

1− 1

C2
1

sinh(βC2 ± βt)

]

, (43)

where constants C1 and C2 can be determined from the initial and the final condi-
tions x(0) = x1 and x(T ) = x2.

The tachyonic Lagrangian (28) for the potential (41) is unsuitable to be quan-
tized, in particular, by the path integral method. However, we can apply CCT to
find a locally equivalent canonical Lagrangian. If choose

F−1(x) =

x
∫

dx

V (x)
=

1

λβ
sinh(βx), (44)

it leads to the full generating function of the form

G(x̃, P ) = −kF (x̃) = − k

β
arcsinh( ˜λβx), (45)

The equation of motion (42) takes a very simple form

¨̃x− β2x̃ = 0 (46)

and the Lagrangian (41) transforms to quadratic Lagrangian [34, 35, 36]

Lquad(x̃, ˙̃x) =
1

2
˙̃x
2
+

1

2
β2x̃2. (47)

The corresponding classical action is

Scl(x̃2, T ; x̃1, 0) =

T
∫

0

Lquaddt =
β
(

x̃21 + x̃22
)

cosh(βT )− 2x̃1x̃2

2 sinh(βT )
, (48)

The second interesting example is an exponential potential

V (T ) = e−αx, α > 0− const, (49)
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The functions F−1(x) and F (x̃) become

F−1(x) =
1

α
eαx, F (x̃) =

1

α
ln(αx̃). (50)

The full generating function (35)

G(x̃, k) = −kF (x̃) = − k

α
ln(αx̃), (51)

reduces equation of motion to again a simple form

¨̃x− α2x̃ = 0. (52)

Obviously, this equation of motion can be delivered from

Lquad(x̃, ˙̃x) =
1

2
˙̃x
2
+

1

2
α2x̃2. (53)

The corresponding classical action is

Scl(x̃2, T ; x̃1, 0) =
α
((

x̃21 + x̃22
)

cosh(αT )− 2x̃1x̃2
)

2 sinh(αT )
, (54)

and it has the same form as the action (48).

It can easily be seen that the quadratic actions (48) and (54) can be quantized
directly using the path integral method. In the real case the transition amplitude
for the quadratic action (48) is [20, 28, 36]:

K∞(x̃2, T ; x̃1, 0) = λ∞

(

− 1

2h

∂2Scl

∂x̃1∂x̃2

) ∣

∣

∣

∣

1

h

∂2Scl

∂x̃1∂x̃2

∣

∣

∣

∣

1/2

∞

χ∞

(

− 1

h
Scl

)

=

√

−iβh−1

sinh(βT )
exp

(

i

(

x̃21 + x̃22
)

cosh(βT )− 2x̃1x̃2

4~β−1 sinh(βT )

)

. (55)

The transition amplitudes allow us, at least in principle, to describe quantum dy-
namics of a tachyonic system with potentials (41) and (49), respectively, in the
nonrelativistic quantum limit. We note that the actions (48) and (54) are different
from the action (23) only in one constant term.

Because the action (48) is quadratic one, the corresponding kernel has an adelic
like form [20]

Kv(x̃2, T ; x̃1, 0) = λv

(

β

2 sinh(βT )

) ∣

∣

∣

∣

β

sinh(βT )

∣

∣

∣

∣

1/2

v

× χv

(

−β
(

x̃21 + x̃22
)

cosh(βT )− 2x̃1x̃2

2 sinh(βT )

)

. (56)
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For the p-adic wave functions (in the case p 6= 2) we get [36]

Ψp(x̃) = Ω(|x̃|p), for

{

|T |p = 1,
|T |p < 1, |βx̃22T |p ≤ 1.

(57)

The above condition is in accordance with the conditions for the convergence
of the p-adic analytical functions which appear in the solution of the equation of
motion (43) and the classical action (48). A relevant physical conclusion served
from these relations still needs a more realistic model with tachyon matter and a
precise form of metrics.

6. p-Adic Inflation

Cosmological inflation has become an integral part of the standard model of the
universe. It provides important clues for structure formation in the universe and is
capable of removing the shortcomings of standard cosmology.

Many string theorists and cosmologists have tried to find natural realizations of
inflation within string theory, and novel features which would help to distinguish the
string-based models from their more conventional field theory counterparts. In most
examples to date, string theory has been used to derive an effective 4D field theory
operating at energies below the string scale and all the inflationary predictions are
made on a low energy effective field theory. However, a few problems still exist.
For instance it is often difficult to identify features of string theory inflation that
cannot be reproduced in the more conventional models. Thus, there is motivation to
consider models in which inflation takes place at higher energy scales where stringy
corrections to the low energy effective action are playing an important role. Also,
it is worth to study nonlocality (connected with nonarchimedean aspects) [37], as
well as a broad class of nonlocal inflationary models.

Gibbons has emphasized the cosmological implication of tachyonic condensate
rolling towards its ground state [15]. The tachyonic matter might provide an ex-
planation for inflation at the early epochs and could contribute to a new form of
dark matter. There are hopes [17] that nonlocal inflation can succeed where the
real string theory fails. p-Adic string theory, initiated by Volovich [6] and developed
by Arefeva, Dragovich, Goshal, Frampton, Freund, Sen, Witten and many other,
despite some open and serious problems is an interesting and wide field of research
[38].

Let us remind that starting from the action of the p-adic string, with ms the
string mass scale and gs the open string coupling constant,

S =
m4

s

g2p

∫

d4x

(

−1

2
φp

−
−∂2

t +▽
2

2m2
s φ+

1

p+ 1
φp+1

)

,
1

g2p
=

1

g2s

p2

p− 1
, (58)

for the open string tachyon scalar field φ(x), it has been shown that a p-adic tachyon
drives a sufficiently long period of inflation while rolling away from the maximum
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of its potential. Even though this result is constrained by p ≫ 1 and obtained by
an approximation, it is a good motivation to consider p-adic inflation for different
tachyonic potentials. In particular, it would be interesting to study p-adic inflation
in quantum regime and in adelic framework to overcome the constraint p≫ 1, with
a still unclear physical meaning [18].

7. Tachyon Potential in the FRW metrics

In this subsection we will briefly discuss tachyon potentials on a real spaces
in a more general case and calculate the slow-roll and observational parameters.
Let us consider the DBI action (27) in homogeneous and isotropic space with the
Friedmann-Robertson-Walker metrics η00 = −1 and η11 = η22 = η33 = a(t), where
a(t) is the scale factor of the universe [39]. The tachyon field can be split into a
homogeneous time dependent contribution x(t) and a small x-dependent perturba-
tion δx(t,x) [40]. In the following discussion we will focus only on the homogeneous
(time dependent) contribution.

The Friedman equation takes the standard form

H2 ≡
(

ȧ

a

)2

=
1

3M2
Pl

V

(1− ẋ2)1/2
, (59)

where H is the Hubble parameter and MPl = (8πG)−1/2 is the reduced Planck
mass. We assume that the space is spatially flat and the cosmological constant is
equal to zero. The energy-momentum conservation equation is

ρ̇ = −3H(P + ρ), (60)

where a pressure (P ) and an energy density (ρ) are

P = −V (x)
√

1− ẋ2, ρ =
V (x)√
1− ẋ2

. (61)

Like in the case of a scalar field with a standard-type Lagrangian, the pressure
and the energy density are equal to the Lagrangian (P = L) and to the Hamiltonian
density (ρ = H), respectively. Equation (60) is transformed into a second order
differential equation

ẍ

1− ẋ2
+ 3Hẋ+

V ′

V
= 0. (62)

It is convenient to rescale the field x and the Friedmann equations (59) and (62)
by introducing a constant x0. Additionally, the cosmic time is rescaled as τ = tx0
and we introduce the dimensionless quantities [39]

x̃ =
x

x0
, U(x̃) =

V (x)

λ
, H̃ =

H

x0
. (63)
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The system of equations (59-62) can be written as

H̃2 =
X2

0

3

U(x̃)
√

1− ˙̃x
2
. (64)

¨̃x+X0

√

3U(x̃)(1 − ˙̃x
2
)3/2 ˙̃x+

(1− ˙̃x
2
)

U(x̃)

dU(x̃)

dx̃
= 0, (65)

In addition, the dimensionless Friedman acceleration equation is

˙̃H = −X
2
0

2
(P̃ + ρ̃), (66)

where the dot denotes a derivative with respect to τ , and

ρ̃ =
U(x̃)

√

1− ˙̃x
2
, P̃ = −U(x̃)

√

1− ˙̃x
2
. (67)

Beside, X0 is a dimensionless ratio which characterizes flatness of the potential V (x)
close to its peak [39, 41]

X0 =
λx20
M2

Pl

, (68)

where λ = M4
s /gs/(2π)

3 is a constant motivated by string theory, Ms is the string
mass and gs is the string coupling.

7.1. Conditions for tachyon inflation

The slow-roll parameters can be defined in a few different ways. In this paper so-
called Hubble hierarchy parameters are used as derivatives of the Hubble parameter
(H) with respect to the number of e-foldings (N). [40, 42]

ǫi+1 ≡ d ln |ǫi|
dN

, i ≥ 0, ǫ0 ≡ H∗

H
, (69)

where H∗ is the value of H at some chosen time. The number of e-folds is

N(t) =

∫ te

ts

H(t)dt, (70)

where ts is the time when counting of e-folds began and te is the time at the end
of inflation. The conditions for inflation are satisfied when ǫi < 1 (i = 1, 2, 3...) and
inflation ends when any of them exceeds unity.

Unfortunately, the slow-roll parameters of inflation cannot be directly measured.
However, the results of Planck Collaboration [42] and previous missions provided
limits on other parameters that can be both measured and calculated in the models.
The most important observable parameters are the scalar spectral index (ns) and
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the tensor-to-scalar ratio (r). In terms of the slow-roll parameters (69) r and the
ns, to the lowest order, can be written as

r = 16ǫ1(xs), ns = 1− 2ǫ1(xs)− ǫ2(xs), (71)

where ǫ1 and ǫ2 are the slow-roll parameters at some particular moment at the
beginning of inflation (i.e. xs = x(ts)).

7.2. Dynamics of inflation

In this section we can review some numerical results for previously mentioned
potentials (41) and (49). The slow-roll parameters, ns and r are calculated and
compared with the observational data.

The potentials could be written in more suitable, dimensionless, form for nu-
merical calculations

U(x̃) =
1

cosh x̃
and U(x̃) = exp(−x̃), (72)

where the potentials (41) and (49) are rescaled in accordance with (63). Equations
(64)-(65) are solved numerically for the initial conditions x̃(0) = xi (where xi is
calculated from the potentials (72) from the standard slow-roll conditions [39, 40,
42]), and ˙̃x(0) is limited to a very small value ( ˙̃x(0) → 0) [39]. The solutions x̃(τ)
and H̃(τ) of these equations are used to calculate the slow-roll parameters (69).
Due to the fact that the solution x̃(τ) is time dependent we have to use the number
of e-foldings given by equation (70). The results are calculated for a sample of sets
(N,X0) where 45 ≤ N ≤ 120 and 5 ≤ X0 ≤ 25.

Finally, the tensor-scalar ratio r(xs) and spectral index ns(xs) are calculated
from equation (71) for the corrected number of e-foldings. Results for the potential
U(x̃) = 1/ cosh(x̃) are shown in Fig. 1.

Fig. 1: r - ns diagram with obser-
vational constraints [42] for potential
U(x̃) = 1/ cosh(x̃). The dots repre-
sent the observationa parameters for
the model for various N and X0: 45 ≤
N ≤ 120 and 5 ≤ X0 ≤ 25. As it
is wxpected agreement with observa-
tion is not very good, anyway the best
results are obtained for N ≥ 85 and
15 ≤ X0 ≤ 25.
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8. Conclusion

Applications of p-adic numbers in quantum cosmology give new possibilities to
investigate the structure of space-time at the Planck scale. In the Hartle-Hawking
approach the wave function of a spatially closed universe is defined by Feynman’s
path integral method. However, it does not lead to the adequate adelic picture. On
the other hand, the consideration of minisuperspace models in the framework of
AQM gives the appropriate adelic generalization. Moreover, all these models lead
to the picture of space-time as a discrete one. For all these models there exists the
adelic wave function

Ψ(q1, ..., qn) =

n
∏

α=1

Ψ∞(qα∞)
∏

p

n
∏

α=1

Ω(|qαp |p), (73)

Adopting the usual probability interpretation of the wave function (73) in rational
points of qα, and because (Ω(|qα|p))2 = Ω(|qα|p) we have

∣

∣Ψ(q1, . . . , qn)
∣

∣

2

∞
=

{

|Ψ∞(qα)|2∞ , qα ∈ Z,
0, qα ∈ Q\Z. (74)

This result leads to the discretization of minisuperspace coordinates qα. Note that
this kind of discreteness depends on adelic quantum state of the universe. When
the system is in an excited state, then the sharp discrete structure disappears, and
minisuperspace, as well as configuration space in quantum mechanics, demonstrates
usual properties of real space.

Tachyon fields and dynamics remain a promising direction of investigation in
string theory and cosmology, in particular for the inflationary scenario. The tachy-
onic inflation approach on real spaces faces difficulties such as reheating [14] and
duration. Nonlocal (p-adic) tachyon inflation [17, 18], in which a p-adic tachyon
drives a sufficiently long period of inflation while rolling away from the maximum
of its potential, deserves much attention.

In this paper we presented quantum propagators for the p-adic and adelic
tachyons in a DBI context, as a natural set up for string theory - (quantum) cos-
mology “interaction“. Conditions for the existence of the vacuum state of p-adic
and adelic tachyons are presented. An interesting relation with the minisuperspace
closed homogenous isotropic model in (2+1) dimensions using Einstein gravity with
a cosmological constant and an antisymmetric tensor field matter source [23, 29]
is noted. A general method for for finding locally equivalent canonical tachyonic
Lagrangians is demonstrated. It is very interesting to calculate the slow-roll pa-
rameters starting with locally equivalent Lagrangians (47) and (53) in a proper
metric.

Finally we calculated observable inflation parameters for a set of relevant real
tachyonic potentials and presented results, for one of them, comparable with the cur-
rent data. However a lack of mechanism for transition from adelic to a real phase of
inflation still prevents full employment of obtained adelic quantum models, in partic-
ular when a quadratic locally equivalent Lagrangian model has been built. Further
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investigation, including different adelic space-time backgrounds, should contribute
to the better understanding of quantum rolling tachyon scenario and the origin of
inflation.
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TAHIONSKA INFLACIJA NA (NE-)ARHIMEDOVIM
PROSTORIMA

U ovom radu razmatra se značaj kvantnih kotrljajućih tahiona i odgovarajući

inflatorni scenario u okviru standardne, p-adične i adelične kosmologije. Teorija

polja za tahionsku materiju, koju je predložio Sen, u nula-dimenzionalnoj verziji

dovodi do brojnih modela čestice koja se kreće u različitim potencijalima. U radu

razmatramo kvantne propagatore za različite modele, kao i vakumska stanja i uslove

koji su neophodni za konstruisanje adelične generalizacije. Osim ovoga prikazan

je i inflatorni scenario za neke interesantne modele zasnovane na analitičkim i

numeričkim izračunavanjima. Katak pregled stanja u ovoj oblasti i ideje za dalja

istraživanja dati su na kraju ovog rada.

Ključne reči: tahioni, DBI skalarno polje, inflacija, kvantna kosmologija, nearhime-

dovski prostori


