Vol.2, No 10, 2000 pp. 1253-1261
UDC 537.226.86(045)
VARIATIONAL THEORY
FOR NONLINEAR PIEZOELECTRICITY
Ji-Huan He
Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, P.R. China

Abstract.  The present paper concentrates on the construction of a generalized variational principle (non Gurtin-type and not involving convolutions) for nonlinear piezoelectricity. By the semi-inverse method proposed by He, a family of variational principles is established directly from the field equations and boundary conditions. Present theory provides a more complete theoretical basis for the finite element applications, variational-based meshless method(element-free method), and the other direct variational methods such as Ritz's , Trefftz's and Kantorovitch's methods.

VARIJACIONA TEORIJA ZA NELINEARNU PIEZOELEKTRIKU
Rad je usresređen na konstruisanje generalizovano varijacionog principa (koji nije Gurtin-ovog tipa i koji ne obuhvata konvolucije) za nelinearnu piezoelektriku. Pomoću semi-inverzne metode koju je predložio He, ustanovljena je familija varijacionih principa direktno iz jednačina polja i graničnih uslova. Ova teorija obezbedjuje kompletniju teorijsku osnovu za primenu konačnih elemenata, meshless metoda (metoda bez elementa) zasnovanog na varijaciji i drugih direktnih varijacionih metoda kao što su Ritz-ova, Treffty-ova i Kantorovitch-ov metoda.