Vol.3, No 11, 2001 pp. 71-79
UDC 531.15:519.614(045)
ON CONDITIONS
OF EXISTENCE OF PERMANENT ROTATIONS OF THE CONNECTED RIGID BODIES SYSTEM
ABOUT THE VERTICAL VECTOR
D. Chebanov, N. Khlistunova
Institute of Applied Mathematics and Mechanics of NAS of Ukraine, R.Luxemburg
Str.74, Donetsk 83114, Ukraine
Abstract. In the classical problem
of motion of a heavy rigid body about a fixed point the permanent rotations
are well known and completely investigated as the most simple and good
visually demonstrated type of motions. Numerous properties of these motions
are established and their theoretical and applied significance is commonly
known (here the list of scientific references is so extensive that O. Staude's
paper [1] must be singled out at first). In multibody mechanics, where
under a increasing of the quantity of the system bodies the quantity of
mechanical parameters and the order of differential motion equations are
increasing too, the studying of conditions of existence of such motions
is a complicated problem. This, apparently, is a reason in a view of which
the problem on permanent rotations of coupled rigid bodies system does
not have a exhaustive solution up to present time.
The success of analytical investigations
in different mechanics problems, especially in multibody system dynamics,
is often caused by a good choice of a form of motion equations for studied
object. In 1st section of this paper the new form of motion equations of
the considered mechanical system is suggested. It is derived from P.V.
Kharlamov's equations [2,3] under the using of the mechanical parameters
of the augmented bodies [4-6] in these equations. The obtained equations
have a more compact form suitable for its studying.
In second section for the system of n
heavy rigid bodies which are sequentially jointed in a chain by ideal spherical
joints the conditions of existence for the motions are determined when
the each of the bodies permanently rotates about the vertical vector. Section
4 contains the analysis of these conditions in a general case when the
bodies angular velocities are different. Under the investigation a prior
conditions on the mass distribution of the bodies and a way of their jointing
are not used. The most simple case of two bodies is studied in 3rd section
in detail.
O USLOVIMA
POSTOJANJA NEPRESTANE ROTACIJE SISTEMA NEPOKRETNIH KRUTIH TELA OKO
VERTIKALNOG VEKTORA
U klasičnom problemu kretanja teškog krutog
tela oko nepokretne talke, neprestane rotacije su dobro poznate i potpuno
istražene kao najprostiji i vizuelno dobro predstavljeni tip kretanja.
Mnogobrojne osobine ovih kretanja su utvrđene i njihov teoretski i primenjeni
značaj je uopšteno poznat (ovde je lista naučnih referenci tako iscrpna
da rad Staude-a mora biti istaknut pre svih). U mehanici sistema tela gde
pri porastu broja tela sistema raste i broj mehaničkih parametara kao i
red diferencijalnih jednačina kretanja, proučavanje uslova postojanja takvih
kretanja je jedan komplikovan problem.
Uspeh analitičkog istraživanja u različitim
mehaničkim problemima, naročito u dinamici sistema mnogostrukih tela je
često prouzrokovan dobrim izborom oblika jednačina kretanja za proučavani
objekat. U prvom delu ovog rada razmatra se novi oblik jednačina kretanja
razmatra-nog mehaničkog sistema. On je izveden iz jednačina P.V. Kharlamova
korišćenjem mehaničkih parametara uvećanih tela ?4,6? u ovim jednačinama.
Dobijene jednačine imaju mnogo kompaktniji oblik koji je pogodan za njihovo
proučavanje.
U drugom delu rada su određeni uslovi
za postojanje kretanja za sistem od n teških krutih tela koji su jedan
za drugim u nizu povezani u lanac idealnim sfernim zglobovima, te su ti
uslovi određeni kada svako od ovih tela neprekidno rotira oko vertikalnog
vektora. Odeljak broj 4 sadrži analizu ovih uslova u opštem slučaju kada
su ugaone brzine ovih tela različite. U istraživanje a priori uslova o
raspodeli mase i načinu njihovog spajanja se nije ulazilo. Najprostiji
slučaj dva tela je proučen u trećem odeljku do detalja.