Vol.3, No 11, 2001 pp.167-178
UDC 515.3
A
NEW PRIMAL-MIXED 3D
FINITE ELEMENT
Dubravka Mijuca
Faculty of Mathematics, University of Belgrade, Studentski trg 16,
P.0. Box 550
11000 Belgrade, Yugoslavia, e-mail: dmijuca@matf.bg
ac.yu
Abstract. This paper discusses properties
of a new HC8/9 finite element in the coordinate independent three-dimensional
primal-mixed formulation, where displacements and stresses are a priori
continuous. The main goal is to show that this element can be reliably
used in the analysis of the regular model problems of arbitrary geometry.
That is, this low–order element can be used in analysis of model problems
without singularities in their domain, in compressible or nearly incompressible
elasticity. In the evaluation of the present scheme, no numerical tune-ups
are used, such as reduced integration in the analysis of thin structures.
To illustrate the properties of the present finite element, usual low and
high tests are provided, regarding its solvability, stability and robustness,
as well as several numerical examples.
Key words: Finite elements,
Full theory, Stress continuity, Reliability
NOVI TRODIMENZIONI
KONAČNI ELEMENT
U radu se predstavlja novi trodimenzioni konačni element za pouzdanu analizu
linearno-elastičnih kompresibilniih i skoro inkompresibilnih tela proizvoljnih
geometrijskih karakteristika, a pod proizvoljnim opterećenjima. Dati element
je razvijen nad prostorima probnih i test funkcija najnižeg reda, a za
koje je polazna primalno-mešovita formulacija rešiva. Rešivost, robustnost
i stabilnost posmatranog konačnog elementa HC8/9 ispitivana je uobičajenim
testovima.