Vol.4, No 16, 2004 pp. 11-31
UDC 519.218.7:531.36:629.7.058.6
Invited Paper

SOME ANALYTIC ITERATIVE METHODS FOR SOLVING VARIOUS CLASSES OF STOCHASTIC HEREDITARY INTEGRODIFFERENTIAL EQUATIONS
Svetlana Janković, Miljana Jovanović
Faculty of Science, Department of Mathematics, University of Niš,
Višegradska 33, 18000 Niš, Serbia and Montenegro
E-mail: svjank@pmf.ac.ni.yu, mima@pmf.ac.ni.yu

Abstract. The notion of hereditary phenomena is particularly convenient for studying such phenomena in continuum mechanics of materials with memories, as a version of the well-known theory of fading memory spaces. Mathematical models represent deterministic hereditary differential equations researched in many papers and monographs. Later, this notion was appropriately used in an investigation of the effect of the Gaussian white noise, which mathematical interpretation is represented by stochastic hereditary differential equations of the Ito type.
In the present paper we consider a general analytic iterative method for solving stochastic hereditary integrodifferential equation of the Ito type. We give sufficient conditions under which a sequence of iterations converges with probability one to the solution of the original equation. The generality of this method is in the sense that many well-known iterative methods are its special cases, the Picard-Lindelof method of successive approximations, for example. Some other iterative methods, including linearizations of the coefficients of the original equation,  are suggested.
Especially, using a concept of a random bounded integral contractor, basically introduced by Altman and Kuo, we show that the iterative procedure utilized to prove the existence and uniqueness of the solution of the stochastic hereditary integrodifferential equation, is also a special algorithm included in the considered general iterative procedure.
Key words:  Stochastic differential equation, stochastic hereditary integrodifferential equation, random integral contractor,  Z-algorithm, determining sequence.

NEKE ANALITIČKE ITERATIVNE METODE ZA REŠAVANJE RAZLIČITIH KLASA STOHASTIČKIH NASLEDNIH INTEGRODIFERENCIJALNIH JEDNAČINA
Nasledni fenomeni su posebno pogodni za proučavanje fenomena u mehanici kontinuuma materijala sa memorijom. Matematički modeli takvih pojava se opisuju determinističkim naslednim diferencijalnim jednačinama, proučavanim u mnogim radovima i monografijama. Kasnije, ovi pojmovi su adekvatno prošireni na istraživanja pod uticajem Gaussovog belog šuma, sa matematičkom interpretacijom stohastičkim naslednim diferencijalnim jednačinama tipa Itoa.
U ovom radu se razmatra opšta analitička iterativna metoda za rešavanje stohastičkih naslednih integrodiferencijalnih jednačina tipa Itoa. Daju se dovoljni uslovi pri kojima niz iteracija konvergira u verovatnoći ka rešenju originalne jednačine. Ova metoda je opšta, u smislu da su mnoge poznate iterativne metode njeni specijalni slučajevi, na primer metoda sukcesivnih aproksimacija Picard-Lindelofa. Prikazane su i neke druge iterativne metode sa linearizacijom koeficijenata originalne jednačine.
Specijalno, koristeći koncept ograničenog slučajnog integralnog kontraktora u smislu Altmana i Kuoa, pokazuje se da je iterativna metoda primenjena u dokazu teoreme egzistencije i jedinstvenosti rešenja stohastičke nasledne integrodiferencijalne jednačine takodje specijalan slučaj prethodno opisane opšte iterativne metode.