Vol.4, No 16, 2004 pp. 121-132
UDC 519.145.4(045)

ON GENERALIZATION OF MULTIVARIABLE
HARMONIC POLYNOMIALS
Lazar N. Djordjević1, Djordje Djordjević2, Valentina M. Milićević1
1Department of Computer Sciences, Faculty of Electronic Engineering
2Department of Mathematics and Informatics,
Faculty of Civil Engineering and Architecture, University of Niš, Serbia & Montenegro

Abstract. In this paper is presented a class of multivariable homogeneous orthogonal polynomials, obtained as linear combination of classical generalized Laguerre polynomials. Using them, the generalized harmonic polynomials are defined. It is proven that multivariable harmonic polynomials are particular case of generalized harmonic polynomials.
Key words: Multivariable harmonic polynomials, Multivariable hypergeometric polinomials, Gauss hypergeometric polynomials, Lauricella functions; Laguerre polynomials, Multivariable Appell polynomials;
Jacobi shifting polynomials.

O GENERALIZACIJI HARMONIČNIH POLINOMA
VIŠE PROMENLJIVIH
U ovom radu je predstavljena jedna klasa homogenih ortogonalnih polinoma više promenljivih koja se dobija kao linearna kombinacija klasičnih generalisanih Laguerreovih polinoma. Pomoću njih su definisani generalisani harmonični polinomi. Dokazano je da su harmonični polinomi više promenljivih partikularni slučajevi generalisanih harmoničnih polinoma.