Vol.6, Special Issue, 2007 pp. 39-52
UDC 007.52+004.89(045)=111

LEARNING OF GRASPS FOR AN ARTIFICIAL HAND BY TIME CLUSTERING AND TAKAGI-SUGENO MODELING
Rainer Palm1, Boyko Iliev2
1Adjunct professor at the AASS, Department of Technology, Orebro University
SE-70182 Orebro, Sweden, also Siemens Co. Research, Frankfurt, Germany
2AASS, Department of Technology, Orebro University SE-70182 Orebro, Sweden
e-mail: rub.palm@t-online.de, boyko.iliev@tech.oru.se 
Abstract. The focus of the paper is the learning of grasp primitives for a five-fingered anthropomorphic robotic hand via programming-by-demonstration and fuzzy modelling. In this approach, a number of basic grasps is demonstrated by a human operator wearing a data glove which continuously captures the hand pose. The resulting fingertip trajectories and joint angles are clustered and modelled in time and space so that the motions of the fingers forming a particular grasp are modelled in a most effective and compact way. Classification and learning are based on fuzzy clustering and Takagi-Sugeno (TS) modelling. The presented method allows to learn, imitate and recognize the motion sequences forming specific grasps.
Key words: Grasp recognition, manipulation robots, programming-by-demonstration, TS-modelling, time clustering

UČENJE ZAHVATA VEŠTAČKOM RUKOM VREMENSKIM GRUPISANJEM I TAKAGI-SUGENO MODELIRANJEM
U ovom radu fokus je na učenju primitivnog zahvata petoprstnom antropomorfnom robotskom šakom preko programiranja demonstracijom i fazi modeliranjem. U ovom pristupu, demonstrira se veliki broj osnovnih zahvata ljudskim operaterom koji nosi rukavicu podataka koja neprekidno zahvata položaj ruke. Rezultirajuća prstne putanjei i spojeni zglobovi sakupljeni su i modelirani u vremenu i prostoru tako da pokreti prstiju koji formiraju odgovarajući zahvat mogu da se modeliraju na najefektniji i kompaktniji način. Klasifikacija i učenje su zasnovani na fazi i Takagi-Sugeno (TS) modeliranju. Predstavljeni metod omogućava učenje, imitaciju i prepoznavanje pokreta koji slede formirajući specifične zahvate.
Ključne reči: Zahvat prepoznavanja, programiranje demonstracijom, manipulacioni roboti, robotska šaka; TS-modeliranje, vremensko grupisanje