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Abstract. In elastoplasticity formulation constitutive relations are usually given in rate 

form, i.e. they represent relations between stress rate and strain rate. The adopted 

constitutive laws have to stay independent in relation to the change of frame of reference, 

i.e. to stay objective. While the objectivity requirement in a material description is 

automatically satisfied, in an Eulerian description, especially in the case of large 

deformations, the objectivity requirement can be violated even for objective quantities. 

Thus, instead of a material time derivative in the Eulerian description objective time 

derivatives have to be implemented. In this work the importance of the objective rate 

implementation in the constitutive relations of finite elastoplasticity is clarified. Likewise, 

it shows the overview of the most frequently used objective rates nowadays, their 

advantages and shortcomings, as well as the distinctive features of the recently introduced 

logarithmic rate. 
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1. EULERIAN DESCRIPTION OF FINITE DEFORMATION 

The process of deformation of a deformable body B from its reference, B0, to a 

current configuration, Bt, represents the change in shape and position of the observed 

body, as it is shown in Fig. 1. While the former leads to a varying distance between the 

arbitrary pairs of particles of the body B (here particles P and Q), the latter reflects a rigid 

body motion, i.e. translation and rotation. In this article an Eulerian description is 

adopted. Therefore, in order to define the position of the particle of interest, instead of 

material coordinates as independent variables spatial coordinates are used. 
The distance between particles P and Q in the reference configuration, represented by 

a material vector dX, is changing during the process of deformation in a corresponding 

space vector dx according to law  
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 ,dd XFx   (1) 

where F is a two-point tensor, called a deformation gradient. Its determinant, entitled the 

Jacobian determinant or shortly Jacobian, meets the rule 

 .0)det(J  F  (2) 

In large deformation problems rotation plays an important role. A polar decomposition 

theorem elucidates this role. It postulates a unique multiplicative decomposition of the 

deformation gradient into a positive definite symmetric 2
nd

-order Eulerian tensor V or 

Lagrangian tensor U known as left or right stretch tensor, respectively, and a proper 

orthogonal rotation tensor R, i.e. 

 .URRVF   (3) 

In the Eulerian description the left polar decomposition is to be applied; it assumes 

that the deformation is composed of the rigid body motion, represented by the rotation 

tensor R, and the stretching, defined by the Eulerian left stretch tensor V, which follows 

the rotation. 

 

Fig. 1 Reference and current configuration of a deformable body 

The squares of the left and right stretch tensors are called left and right Cauchy-Green 

tensors  and are determined as  

 ,and T2T2
FFUCFFVB   (4) 

are more convenient for numerical purpose. Relations between Cauchy-Green tensors are 

given as 

 .and TT
RBRCRCRB   (5) 
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2. ANALYSIS OF MOTION 

Since most of formulations of finite elastoplasticity are given in a rate form, which is 

well-suited for the numerical implementation of the latter into finite element based 

programs, it is necessary to express the previously introduced quantities as functions of 

time.  

A velocity of the observed material point can be defined in the Eulerian description 

by the following relation 

 ,
d

d
)(

t
t

x
xv    (6) 

while its increment is given as 

 ,dd
),(

),(d xvx
x
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t
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i.e. 

 .ddd xLxv    (8) 

Here L represents the velocity gradient. It actually maps the material line element dx 

to its rate in the current configuration. Unlike the deformation gradient, that describes a 

local deformation state of the particle P and is related to the reference configuration, the 

velocity gradient defines a rate of change of a local deformation state of the particle P 

and it is not related to the reference configuration. As a function of the deformation 

gradient the velocity gradient can be expressed in the form 

 .-1
FFL    (9) 

It can be decomposed into its symmetric part, related to stretching, and skew-

symmetric part, related to rotation,  

 ,WDL   (10) 

where the rate of deformation tensor or the stretching tensor D and the vorticity tensor or 

the spin tensor W are given respectively as 

 ),(
2

1
and)(

2

1 TT
LLWLLD   (11) 

(see e.g. Malvern, 1969, and Mićunović, 1990). 

One of the key tasks in defining a reliable model of elastoplastic material behaviour is the 

choice of a suitable strain rate measure that will be implemented in the constitutive laws. The 

stretching tensor D can be one of these strain rate measures. But, in spite of its name as the 

rate of deformation tensor, until recently it has been considered that the stretching tensor 

cannot be defined either as a Lagrangian or as an Eulerian strain rate tensor and therefore it 

has not been recognized as a rate of deformation (see Ogden, 1984). However, Xiao et al. 

(1997, 1998b) have proved that the stretching tensor D can be exactly integrated to give the 

Hencky strain tensor h, defined in the Eulerian description by the relation 

 .lnln
2

1
VBh   (12) 
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How to define the natural deformation rate D as a direct flux of the Hencky 

(logarithmic) strain h will be explained in Section 3.3. 

3. OBJECTIVITY OF A TENSOR FIELD 

The deformation of the body can be observed by one or several physical observers 

and, thus, it can be described in different ways. For example, we have two observers that 

are recording the process of deformation. One observer is labelled with star and another 

one without star. Consequently their records are designated on the same way. The 

transformation between the coordinate systems associated to the space position of both 

observers is described by the relation 

 
),()(* tt cxQx 

 (13) 

where Q is a proper orthogonal tensor of relative rotation and c is a vector of relative 

translation of one observer relatively to another. Observations can be recorded in different 

time and therefore, using the time distance in records a, the time difference can be 

specified as 

 .* att   (14) 

Physical phenomena do not depend on the choice of the observer, which is not 

necessarily the case of their kinematical description. That reflects on the mathematical 

formulation of physical laws such as constitutive models. 

 According to Ogden (1984), scalar a0, vector 0 or 2
nd

-order tensor field A0 defined in 

the Lagrangian configuration, are objective if they conform to these transformation rules 
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Since the following relation holds  

 ),,(),( 0

**

0 tt XAXA    (16) 

the conclusion we arrive to is that the material time derivative of the transformed 

Lagrangian 2
nd

-order tensor satisfies the objectivity requirement. 

The Eulerian scalar quantity a, vector  or 2
nd

-order tensor A, contrarily to the Lagrangian 

quantities, are objective if they transform according to the following rules  

 

.)(),()(),(

),()(),(
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The last relation clearly shows that the transformation of the Eulerian quantities is 

dependent of the rotation tensor Q and accordingly of the change of frame.  
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The material time derivative of an objective Eulerian 2
nd

-order tensor changes as  

 .)(
d

d TTTTT*
QAQQAQQAQQAQQAQA  

t
 (18) 

The last relation shows that the material time derivative of an objective 2
nd

-order 

tensor does not obey the transformation rule (17)3, and, therefore, it can be concluded that 

the material time derivative in the Eulerian description is not an objective quantity. 

Therefore, instead of the material time derivative an objective time derivative has to be 

used in order to preserve the objectivity requirement in the Eulerian description. Then, 

the following relation holds 

 ,T*
QAQA 


  (19) 

where


A is the objective time derivative of the objective Eulerian quantity A.  

3.1. Corotational and convective frame 

One of the observers, O, can be detected at the fixed point of space o, while the 

second, observer O
*
, is located on the moving body at point o

*
 and it moves and rotates 

together with the deformable body (see Fig. 2). The point o is the origin of a fixed 

background frame, while o
* 

is the origin of a so-called co-deforming frame. In such a 

way, relation (13) shows the transformation between the background and the co-

deforming frame. That means that the pair (x, t) represents the point in the Galilean 

space-time, occupied by the particle P, observed by O from the background frame, while 

the pair (x
*
, t) represents the same point in the space observed by O

*
 from the 

transformed moving frame. It will be assumed that both observers record the position of 

the particle at the same time; thus the time difference a vanishes. 

From relations (13) and (14) the transformation between the frames can be defined as 

 ,with)()(* * tttt  cxKx  (20) 

where the time dependent tensor K is not the proper orthogonal but a general asymmetric 

2
nd

-order tensor determined by the following 1
st
-order differential system with a 

prescribed initial value  

 .|, 0 1KKΨK  t
  (21) 

In the previous relation 1 is the unit 2
nd

-order tensor while Ψ  is the asymmetric 2
nd

-

order tensor given by 

 ,ΓΩΨ   (22) 

where  is the antisymmetric part and  is the symmetric part of Ψ . The skew-

symmetric tensor  is called the spin.  
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Fig. 2 Background and co-deforming frame 

Transformation of an objective Eulerian tensorial quantity A, defined in the background 

frame, to A
*
 in the co-deforming frame can be determined by the transformation rule 

 .T*
KAKA   (23) 

Accordingly, the material time derivative of the transformed quantity A
*
 can be 

presented as 

 ,)(
d

d TTTTT*
KAKKAKKAKKAKKAKA 




t
 (24) 

where the objective time derivative, introduced in the previous Section, is determined by 

the tensor Ψ  as 

 .T
AΨΨAAA 


  (25) 

The kinematical property of relation (24) can be understood in such a way that the 

material time derivative of the counter part of the Eulerian quantity A in the co-

deforming frame is the co-deforming counter part of the objective time derivative of the 

same quantity A in the background frame. 

The objective rates of the symmetric Eulerian 2
nd

-order field have been so far given in 

a general form. Since the objective rates play an essential role in modelling of various 

material behaviours in the Eulerian description, the type of the objective rate should be 

carefully chosen. Depending on the choice of the tensor Ψ  the objective rates can be 

generally classified in two categories of corotational and non-corotational objective rates 

(cf. Bruhns et al., 2004). 
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Every time the symmetric part of Ψ , given by relation (22), vanishes, i.e. Ψ  

becomes equal to the spin , the frame determined by Eqs. (20) and (21) is a spinning or 

corotating frame and K is equal to the rotation tensor. Otherwise, Ψ  determines a 
convective frame. While the former experiences only constant rotation the latter can 
deform and rotate continuously during the deformation process. As for the convective 
frame, the coordinate system in o

*
 is no longer a Cartesian coordinate system and when it  

undergoes the change of frame, a physical or kinematical quantity can lose some 
important features. For example, the eigenvalues of the quantity of interest can be 
modified during the process of deformation. If we want to preserve the physical or 

kinematical features of a physical or a kinematical tensor, the tensor Ψ  must be a skew-
symmetric tensor, which means that ΩΨ  . That leads to K = Q, i.e. K is the proper 
orthogonal rotation tensor. For details see Bruhns et al. (2004) and Xiao et al. (2005). 

Integration of (24) leads to the generalised objective time integration of the objective 

rate  

 ,d T-T1
KKAKKA  




t

t  (26) 

and it is applied in the co-deforming frame. This relation is found to be useful for the 

numerical implementation of the objective time derivatives in the constitutive relations of 

elastoplasticity. 

3.2. Non-corotational rates 

The objective non-corotational rate of the objective Eulerian quantity can be generally 

defined as 

 .T
AΨΨAAA 


  (27) 

With the specific choice of Ψ as 

 ,)(tr 1DDWΨ cm   (28) 

a broad class of objective non-corotational rates can be defined from (27): 

 ,))(tr())(tr( T
A1DDW1DDWAAA 



cmcm  (29) 

where m and c are real numbers. For certain values of m and c in the last relation, well 

known rates can be obtained: 

the (upper) Oldroyd rate  

 0, and -1forT
Ol




cmLAALAA   (30) 

the Cotter-Rivlin rate  

 0, and 1forT
CR




cmLAALAA   (31) 

the Truesdell rate  

 0.5. and 1for)(trT
Tr




cmADLAALAA   (32) 



74 M. TRAJKOVIĆ-MILENKOVIĆ, O. T. BRUHNS  

3.3. Corotational rates 

The symmetric part of tensor Ψ may vanish, as it was pointed out in Section 3.1. It 

turns out that ΩΨ  The rotating, or co-deforming, frame is then determined by the 

skew-symmetric 2
nd

-order Eulerian tensor Q instead of the general asymmetric 2
nd

-order 

tensor K, introduced earlier. The skew-symmetric spin tensor determining the rotating 

frame, is defined by: 

 .TTT
ΩQQQQΩ    (33) 

The rotating frame becomes the corotating frame and the general objective time 

derivative 


A becomes the corotational rate


A , defined as 

 .AΩΩAAA  


 (34) 

The following relation describes transformation of the objective Eulerian 2
nd

-order 

tensor quantity from the background to the corotating frame 

 ,T*
QAQA   (35) 

while the material time derivative of the transformed quantity A
* 

in the corotating frame 

turns into 

 .T*
QAQA 


  (36) 

One comes to the conclusion that the corotational rate of the objective Eulerian tensor 

A corresponds to the material rate of A in the corotating frame (cf. Xiao et al., 1998a). 

The last relation does not hold for tensors that are not objective. 

Different corotational rates can be obtained for different choices of the spin tensor Q. 

Although the chosen spin relation (36) satisfies transformation rule (17)3, the corresponding 

corotational rate does not need to be an objective quantity. That means that the most 

important demand of objectivity of the corotational rate (cf. Truesdell et al., 2004) may be 

violated. Bearing in mind the fact that the objective corotational rate has the crucial 

importance in a material behaviour description, especially of an inelastic behaviour, the 

significance of the proper choice of the objective rate and their defining spin tensors is 

again pointed out. 

For different choices of a single antisymmetric real function, named a spin function, 

Xiao et al. in (1998a) and (1998b) define a general class of spin tensors and 

corresponding general class of objective corotational rates. In the spin function h (z), z 

represents the ratio between n distinct eigenvalues of the left and right Cauchy-Green 

tensors, where n (for detailed definition of the spin function see Xiao el al. 1998b). 

The choice of the spin function as  

 0)()( J  zhzh  (37) 

yields the spin tensor 

 ,J
WΩ   (38) 

which, implemented in (34), defines the well-known Zaremba-Jaumann rate  
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 .
J

AWWAAA  


 (39) 

The Jaumann rate was the first introduced in the rate formulation of inelastic material 

behaviour. Since it can be easily implemented and numerical calculations are not so time-

consuming it has been widely accepted and used. It is, as well, incorporated in several 

commercial finite element codes. Implementation of the Jaumann rate in constitutive 

theories gives appropriate results for the case of small deformations. However, this rate may 

not be an adequate choice for the case of finite deformations (Lehmann, 1972; Dienes, 

1979; Simo & Pister, 1984; Khan & Huang, 1995; Bažant & Vorel, 2014). It has been 

shown that for the pure elastic deformation constitutive model based on the Jaumann rate 

gives an unstable response at simple shear, known as shear oscillatory phenomenon.  

In order to overcome the deficiencies encountered with the Jaumann rate implementation 

in finite deformation formulation, numerous alternative corotational rates have been 

developed (cf. Xiao et al., 2000). 

One of them is the polar or Green-Naghdi rate. If the spin function takes the form 

 ,
1

1
)()( R

z

z
zhzh




  (40) 

the polar spin 
R
 will be obtained 

 ,TR
RRΩ    (41) 

which, substituted in (34), defines the Green-Naghdi rate  

 .RR
GN

AΩΩAAA  


 (42) 

Even though the introduction of the aforementioned rates solves the problem of the 

unrealistic harmonic stress responses obtained for the Jaumann rate, Simo & Pister 

(1984) have showed that for the case of pure elastic deformation, where the recoverable 

elastic-like behaviour was expected, none of the constitutive relations, based on formerly 

used objective rates, can fulfil Bernstein's integrability condition to give an elastic 

relation, i.e. path-dependent and dissipative processes are detected for all rates. 

Recently the new spin function, so-called logarithmic spin function, has been introduced 

as 

 .
)ln(

2

1

1
)()( R

zz

z
zhzh 




  (43) 

It leads to the logarithmic spin tensor 

 ,)( TLogLogLog
RRΩ    (44) 

whose implementation in (34) gives the logarithmic corotational rate or Log-rate of A 

 .LogLog
Log

AΩΩAAA  


 (45) 
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The previously defined symmetric stretching tensor D is a natural characterization of 

the rate of change of the local deformation state, thus we want to present it as a direct flux 

of a strain measure. What is more, we are interested in finding out which Eulerian strain 

measure e and which corotational time derivative satisfy the following relation 

 ,DeΩΩeee 


 (46) 

where with e a general Eulerian strain measure has been designated. 

In Xiao et al. (1997) and  (1998a) the authors have proved that among all strain 

measures and among all corotational rates the spatial logarithmic strain measure h and the 

logarithmic rate are the unique choice that satisfies the above demand, i.e. 

 .LogLog
Log

DhΩΩhhh  


 (47) 

In (44) it can be recognized that the logarithmic spin is determined by the proper 

orthogonal logarithmic rotation tensor R
Log

 that is defined by the linear tensorial differential 

equation 

 .|, 0

LogLogLogLog
1RΩRR  t

  (48) 

The corotating frame obtained from the background frame by the rotation R
Log

 is 

named a logarithmic corotating frame. The material time derivative of an objective 

Eulerian quantity A, in the logarithmic corotating frame, is exactly the logarithmic rate of 

the same quantity, i.e. 

 .)())((
d

d TLog
Log

LogTLogLog
RARRAR 



t
 (49) 

Applying the last assertion to h and the stretching D, the following relation will be 

obtained 

 ,)())((
d

d TLogLogTLogLog
RDRRhR 

t
 (50) 

that is, in the logarithmic corotating frame stretching D is a true time rate of h. 

Integration of (49) leads to the corotational integration 

 ,d)()( LogTLog
Log

LogTLog
RRARRA  

t

t


 (51) 

and it is performed in the logarithmic corotating frame. The last relation is a particular 

form of the generalised objective time integration given by (26). This relation will be of 

tremendous importance in numerical calculations. 

Following the theoretical postulates given in Bruhns et al. (1999) in Trajković-

Milenković (2016) it is numerically proved that the implementation of the Log-rate in the 

constitutive relations of finite elastoplasticity successfully solved the aforementioned 

problems observed with all other corotational and non-corotational rates. On several 

benchmark examples it has been proved that the material behaviour prediction based on 
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the logarithmic rate is stable and completely in accordance with experimental tests, in 

opposition to actually popular objective rates. 

Unlike to the Jaumann rate and the Green-Naghdi rate, which are already incorporated 

in the commercial finite element codes through the built-in subroutines and their application 

is completely optimized, the logarithmic rate has to be implemented in the software using 

the special user subroutine which allows user to define his own material model. This kind 

of subroutine offers the user a lot of possibilities but it will be called in each time step and 

for each integration point and, therefore, the numerical calculation can be time-consuming, 

which could be from the numerical point of view the only disadvantage of using the 

logarithmic rate.   

4. DECOMPOSITION OF FINITE DEFORMATION 

Elastoplasticity represents a combination of two completely different types of material 

behaviour, namely elasticity and plasticity. A great number of the modern theories of 

elastoplasticity are confined to the description of a rate-independent behaviour of 

elastoplastic materials, i.e. viscous effects are ignored. Before 1960, most contributions in 

the rate-independent elastoplasticity theory were dedicated to the field of small 

deformations. Some of the basic ideas of the theories for small deformations can be fully or 

partially applied for the case where finite deformations are occurring (cf. Naghdi, 1990, and 

Xiao et al., 2006). 

One of those ideas is the composite structure of elastoplasticity. It means that a total 

deformation, or total deformation rate, of elastoplastic material can be decomposed into 

its elastic, or reversible, and plastic, or irreversible, part and then a separate constitutive 

relation for each part has to be established. Taking into consideration the incremental 

essence of elastoplastic behaviour of material, we are more interested in the strain rate 

than the strain itself. The rate of infinitesimal strain  can be additively decomposed in 

the following form: 

 .pe
εεε    (52) 

Even though the researchers agree with the aforementioned statement for the case of 

small deformations, the decomposition of finite deformation into its reversible and 

irreversible part causes the disagreement within the members of the plasticity community 

dividing them into several various schools of plasticity. 

The first belongs to the group which follows the idea that the classical Prandtl and 

Reuss formulation (52) can be extended to the finite deformation description using the 

additive decomposition of the natural deformation rate to its elastic and plastic part, i.e. 

 .pe
DDD   (53) 

It has been thought that the above decomposition of the stretching can hold only for 

certain restrictive cases of deformation and materials, such as small elastic and finite 

plastic deformations in metals (Simo & Hughes, 1998). Such an opinion is coming from 

the fact that in order to fulfil the objectivity requirement the rate type model must involve 

the objective rate, instead of the material time derivative, and the use of the Jaumann and 

some other well-known objective rates in the context of decomposition (53) produce 
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irregular results, such as the shear oscillation phenomenon and the residual stresses 

occurrence for elastic closed strain path as well as non-integrability problem (see Trajković-

Milenković, 2016, for details and relevant references). Thus, this decomposition has been 

rejected for a long time as inappropriate for a general purpose. This held true until 

recently when an implementation of the newly discovered logarithmic rate solved the existing 

problems (Xiao et al., 1997b, and Bruhns et al., 1999) which has been also numerically 

proved in Trajković-Milenković (2016).  

The second approach is the most common in the finite deformation theories; that is 

the multiplicative decomposition of the deformation gradient, given by 

 ,pe
FFF   (54) 

where F
e
 and F

p
 represent elastic and plastic part of the deformation gradient, 

respectively. 

An intermediate stress-free configuration achieved by an elastic unloading from the 

current configuration is introduced by this formulation. Therefore, while the mapping 

from the reference to the current configuration is described by the deformation gradient 

F, the mapping from the reference to the intermediate configuration can be described by 

its plastic part F
p
 and from the intermediate to the current configuration by its elastic part 

F
e
. An arbitrary rigid body rotation Q superimposed on the intermediate configuration 

has no influence on the decomposition (54), thus the determination of the elastic and 

plastic part of deformation gradient is not unique, i.e. 

 .andwith, T ppeepepe
FQFQFFFFFFF   (55) 

In addition, according to Naghdi (1990), multiplicative decomposition (54) has several 

shortcomings. The first "lies in the fact that the stress at a point in an elastic-plastic material 

can be reduced to zero without changing plastic strain only if the origin in stress space remains 

in the region enclosed by the yield surface." This is usually not the case, except of some 

special cases such as isotropic hardening. However, it is observed, that the yield surface may 

move in the stress space during deformation. Furthermore, "even if the stress can be reduced 

to zero at each material point, the resulting configuration will not, in general, form a 

configuration for the body as a whole, but only a collection of local configurations."  

A further physically admissible decomposition is established by Green & Naghdi 

(1965) postulating the additive decomposition of the Green strain, the Lagrangian strain 

measure. The authors introduce a strain-like variable of Lagrangian type, called plastic 

strain E
p
, as a primitive variable. The total Green strain is decomposed using the form 

 ,pe
EEE   (56) 

where only for the case of small deformations E
e
 can be denoted as elastic strain. Having 

well understood the limited applicability of the additive separation of E for large 

deformations, they do not interpret the difference E - E
p
 as an elastic strain or part, but as 

an alternative convenient variable used for well motivated purposes. 
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5. CONCLUSION 

Since the introduction of the logarithmic rate has successfully eliminated the aforestated 

shortcomings of the proposed decomposition of finite deformation, our recommendation 

would be the implementation of the self-consistent Eulerian finite elastoplasticity theory, 

based on the logarithmic rate and the additive decomposition of the natural deformation 

rate. As well, it will be the base of our future work. The implementation of the proposed 

theory into commercial finite element codes will be used for numerical calculations of 

homogeneous and non-homogeneous problems in order to show the advantage of the 

suggested approach. The obtained results will later be published elsewhere.  
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ALTERNATIVNI PRISTUP KONAČNIM DEFORMACIJAMA  

U savremenoj formulaciji elastoplastičnog ponašanja materijala konstitutivne relacije su 

uglavnom date u formi izvoda, tj. predstavljaju vezu između izvoda napona i izvoda deformacije 

kako u formulaciji plastičnog tako i elastičnog dela deformacije. Usvojene konstitutivne relacije 

moraju ostati nezavisne u odnosu na promenu koordinatnog sistema, tj. da ostanu objektivne. Dok 

je preduslov objektivnosti u materijalnoj deskripciji automatski zadovoljen, u Ojlerovoj deskripciji, 

posebno u slučaju velikih deformacija, objektivnost može biti narušena čak i za objektivne 

promenljive. Stoga, umesto materijalnog izvoda, u konstitutivnim relacijama datim u Ojlerovoj 

deskripciji moraju se implementirati objektivni izvodi. Ovaj rad doprinosi pojašnjenju važnosti 

implementacije objektivnih izvoda u konstitutivnim relacijama konačne elastoplastičnosti i daje 

pregled danas najčešće korišćenih objektivnih izvoda, njihovih prednosti i nedostataka, kao i 

izuzetnih karakteristika nedavno uvedenog logaritamskog izvoda. 

Ključne reči: konačne deformacije, objektivni izvodi, logaritamski izvod, elastoplastičnost, 

dekompozicija velikih deformacija 


