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Abstract. Monitoring of structures implies integration of sensors and actuators, smart 

materials, data transfer as well as computer analyses and simulations with the purpose 

of damage detection, localization, assessment and prediction of the state of damage at 

the certain moment and in time. This paper presents the application of the explicit 

finite element method for modeling of the wave propagation. The examples of concrete 

plates and thin steel plates in which the propagation of the Lamb waves occur were 

analyzed. Explicit finite element method was shown to be very efficient even for the 

waves in ultrasound range. Efficiency, ease of the use and reliability of the wave 

propagation modeling by the explicit finite element method can contribute to the 

development of a new and the improvement of the existing methods for the monitoring 

of structures.The main purpose of this paper is to demonstrate a waveform propagation 

model using an explicit FEM in ABAQUS software. 

Key words: explicit finite element method, structural health monitoring, wave 

propagation, piezoelectric sensors, damage detection 

1. INTRODUCTION 

Computer-aided engineering (CAE) is the broad usage of computer software to aid in 

engineering analysis tasks, for mechanical, civil-engineering, air-industry etc. It includes 

Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multi-body 

dynamics (MBD) and optimization. As Moor’s rule predicted, the computing power 

increases tenfold every five years. The CAE engineers have witnessed and enjoyed the 

great advances in computer architectures and software functionalities. With growing 
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computing power, expectations for more accurate predictive analysis have also risen. 

Simulation as an important design tool has been built into the manufacturing process. This 

represents a tough challenge to engineers as they try to assess the reliability of the results 

predicted by the computer simulation, even before the prototype test is conducted. Being 

overly reliant on simulation results can sometimes lead to wrong and costly decisions. In 

recent years, the concept of verification and validation has been proposed. Verification 

and validation is critical for certain types of simulation, whose errors could lead to major 

disasters. It is essential to determine how to systematically verify the numerical solution. 

It is very difficult to write about when exactly the finite element method (FEM) was 

created. The first forms of this method are used for the purpose of civil engineering and 

airline industries and it can be said with some reserve that Hrennikoff A. and R. Courant 

are the initiators of the FEM. Today, computer simulations which are for the most part 

carried out by finite element method, are widespread in scientific research and practical 

application. The explicit finite element method has been successfully applied to various 

simulations such as wave propagation, nonlinear transient dynamics with small and large 

deformations. It is now widely adopted in the manufacturing process as well as in the 

research activity. As reported in journals and conferences, many problems have been 

solved by using explicit finite element method. 

Monitoring of structures using piezoelectric (PZT) patches represents one of the modern 

methods of structural health monitoring, which are still in development. Application of PZT 

sensors/actuators has been excessively experimentally investigated under the static, dynamic, 

and cyclic loading on the structural elements and whole structures such as: beam elements 

[1÷3], columns [4÷6], reinforced concrete walls [7], frames [8], piles [9] and bridge 

structures [10]. PZT sensors have proven to be multifunctional devices which could be 

applied for various purposes, such as monitoring of vehicle induced impact forces on bridges 

[11], monitoring of the bond between reinforcement and casted concrete [12], detection of 

the damage of reinforcement inside a RC element [13], monitoring of the water content 

variation in concrete [14], vibration control of civil engineering structures [15], 

determination of early strength of concrete in-situ [16] as well as determination of 

compressive stresses due to the seismic actions on RC structures [17]. 

PZT patches are being used very successfully for monitoring and detection of the 

damage of steel and aluminum structures in aircraft industry, civil engineering, mechanical 

engineering etc. The use of Lamb waves induced by PZT patches bonded on the structure 

surface is of great importance in these types of structures for damage detection and 

localization and determination of damage size. For the purpose of damage detection, Pitch-

catch [18], Pulse-echo [19] and Time-reversal [20] methods were experimentally and 

numerically analyzed. 

Modeling of wave propagation in reinforced-concrete plate elements, using finite 

element method and commercial software package ANSYS was applied in [21]. Besides 

the use of commercial software package ANSYS, very successful modeling of wave 

propagation was performed in software ABAQUS [22] as well as in LS-DYNA [23]. FEM 

was successfully applied in modeling of three-dimensional propagation of PZT patch 

induced Lamb wave through reinforced composites [24] and homogenous plates [25]. 

FEM modeling of directed Lamb waves, induced by piezoelectric patches bonded on the 

steel plate, was utilized in [26]. There are many published papers showing the application 

of FEM modeling of wave propagation. 
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 However, the use of propagation of waves induced by PZT actuators was analyzed 

also by the use of other methods. Spectral-element method was used for modeling of wave 

propagation in plate elements [27] as well as the local interaction simulation approach [28]. 

The aim of this paper is to review the efficiency of explicit FEM for the purpose of 

modeling wave propagation. This method can be used for general modeling of wave 

propagation, but in this paper, the wave propagation induced by PZT smart aggregate 

(SA) actuators embedded in reinforced concrete plate elements with a hole was analyzed. 

2. THEORY OF LAMB WAVES 

Lamb waves propagate in solid plates. They are elastic waves whose particle motion 

lies in plane direction. Lamb waves may propagate in free plates with parallel sides. 

Basic concepts of the Lamb wave propagation presented in this paper were used from 

reference [29]. In thin isotropic and homogeneous plates the waves, regardless of the 

mode, can generally be described in a form of Cartesian tensor notation as [30]: 

 , ,( )i jj j ji i iG u G u f u                 , 1,2,3i j   (1) 

with the following designations: ui is displacement, fi is body force, ρ is density, G is 

shear modulus, and λ is Lame constant. 

Using Helmholtz decomposition equation (1) can be decomposed into two uncoupled 

parts under the plane strain condition: 
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with the following designations: A1, A2, B1 and B2 are four constants determined by the 

boundary conditions, k is wave number, ω is circular frequency and λwave is wavelength of 

the wave. Longitudinal velocity cL and transverse (shear) velocity cS are defined by: 
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If we assume plane strain conditions, the displacement in the wave propagation direction 

(x1) and normal direction (x3) can be described as: 

 1
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However, the conditions which correspond to the propagation of Lamb waves: 

 0( , ) ( , )u x t u x t ,   i ji jt n ,   31 33 0     at  3 / 2x d h     (10) 

where d is plate thickness and h is half plate thickness. By applying the boundary 

conditions defined by equation (10) to equation (9) we can obtain the general description 

of Lamb waves in an isotropic and homogeneous plate: 
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Applying equation (6) and equations (7) and (8) into the equation (11), and 

considering trigonometric features of the above equation, equation (11) can be split into 

two parts with unique symmetric and anti-symmetric properties, respectively, implying 

that Lamb waves in a plate consist of symmetric and anti-symmetric modes [30]: 
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Equations (12) and (13) are known as the Rayleigh-Lamb equations. 

3. EXPLICIT FINITE ELEMENT METHOD 

Since the process of explicit finite element method is explained in many publications 

so far, here we will give only a brief overview of the basic equations and rules. Starting 

with Newton’s second law written in matrix form: 

 F M A                                                     (14) 

with the following designations: F is body force, M is mass matrix, and A is acceleration. 

Whereby members of the expression can be defined by the following expressions: 
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Where: Fi

m
 is body force; ij is stress; M, N are based functions; gi represents the 

components of the tractions on part of the boundary S; MMN is mass matrix;  is mass 

density; fi represents the components of the body force; üi
N
, u is second derivation of 

displacement and displacement; Ai

N
 is acceleration; t is time;  is space domain; S is 

boundary domain. 

More detailed explanation of the elements of equations can be found in [31]. System 

defined by equation (14-17) is a system of second-order ordinary differential equations in 

time, whether linear or nonlinear. For solving this system explicit scheme uses central 

difference method to approximate the acceleration, velocity and displacement. Assume 

that the time domain [0,T] is uniformly divided into N equal subintervals [tn, tn+1], with 

0=t0< t1<… tN=T, tn+1tn=∆t=T/N. The displacement, velocity and acceleration as time 

derivatives are approximated by the finite difference method, expressed in the vector form 

as: 
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where u is displacement, u is velocity and ü is acceleration. ∆t (subinterval) is equal to 

tn+1tn or T/N. 

Approximated the acceleration by central difference method defined in (18) and (19), 

the finite element equation (14) is reduced: 

 2
1h

n nt
u M F     (20) 

The explicit finite element procedure can be presented as an algorithm in Figure 1. 

The implementation of equation (20) is conditionally stable and the time step ∆t has to 

be smaller than the critical time step ∆tcrit which in an undamped system depends on the 

higher frequency in the smallest element: 

 
max

2
critt t

f
                                       (21) 

For wave propagation modeling, as small deformations of elements is assumed, an 

approximation often used is that the critical time step is the transit time of a dilatational 

wave through the smallest element in the model: 

 crit
L

L
t t

c


     (22) 

where ∆L is the smallest element size, ∆t is time step and ∆tcrit is critical time step.  

In this paper, the criterion for defining the time step is defined by the basis of equation 

(22). The size of the final element is adapted to satisfy the usual condition that a 

wavelength divided by a final element is greater than ten. 
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Fig. 1 Procedure of explicit finite element method 

The diagonal mass matrix is an important feature that makes the explicit method 

efficient and practical. When using diagonal mass matrix, the step to calculate acceleration by 

applying Newton’s second law in (20) is reduced to a simple division without the need of 

inverting the mass matrix. This reduces the time for model calculation and makes explicit 

finite element method a very efficient for modeling wave propagation.  

4. NUMERICAL EXAMPLES 

Application of explicit finite element method will be presented in the case of concrete 

plate and thin steel plate. Both plates are modeled with damage in the form of holes. The 

geometry of the plates, position of actuators and sensors, and position and size of damage 

are shown in Figure 2. 

4.1. Numerical model 1 - Concrete plate 

A 0.4x0.4x0.05m concrete plate, with two PZT SA, which is numerically analyzed is 

presented in Figure 2. Damage is simulated as a hole with radius of 0.02m. The modeling 

method, employing standard and explicit FEM represent the modeling procedure used in 

the paper [32] which was verified by the experiment on the concrete beams. The model of 

PZT SA was made in the software package ABAQUS/STANDARD taking into 

consideration electromechanical characteristics of PZT materials, using the combination 

of mechanical equilibrium and the equation of equilibrium of electrical flux. 
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Fig. 2 Geometric characteristics of concrete and steel plate models 

Displacement obtained as a consequence of imparting of electrical voltage on the PZT 

element was used as an input parameter for modeling of wave propagation, performed in 

ABAQUS/EXPLICIT software package. Function of displacement variation used in the 

analysis is 3.5 cycle Hanning windowed tone burst signal defined with equation (23) with 

duration of 3.5e
-5

 sec and central frequency of 100kHz. 
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Concrete plate was modeled as linear-elastic material with characteristics presented in 

Table 1. Material damping is modeled with Rayleigh damping model. For defined material 

Rayleigh damping, two damping factors must be specified: αR for mass proportional 

damping and βR for stiffness proportional damping. For a given mode I the fraction of 

critical damping can be expressed in terms of the damping factors: 

 
2 2

R iR
i

i

 



   (24) 

where ωi is the natural frequency at this mode. Values of mass and stiffness proportional 

factors in presented concrete model are defined in Table 1. 

Table 1 Material characteristics of linear-elastic concrete model 

Concrete Value 

Density  (ρ) [kg/m3] 2400 

Modulus elasticity (E) [Pa] 30·109 

Poissons ratio (ν) 0.2 

Mass damping factor 0.01 

Stiffness damping factor 5·10-8 
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4.1.1. Results and discussion 

In Figures 3 and 4 the wave propagation through concrete plate induced by PZT 

actuator was shown. At the upper part of the Figure 3 the beginning of the wave propagation 

was shown, and at the lower part further wave propagation was shown. In these Figures, 

the wave propagates freely, limited only by geometry of the concrete plate. 

 

 

Fig. 3 Wave propagation at concrete plates at time points: 1.06 e
-5

 (s) and 6.65 e
-5

 (s). 

The first reflection of the wave was shown in Figure 4a, where the waves were 

reflected off the sides and are propagating back toward the actuator. However, besides the 

waves reflected off the plate sides, the waves reflect of the damage as well. This was also 

shown in Figure 4b. This reflection has a direct influence on the reduction of the energy 

of the output signal in the sensor. By monitoring the energy of the output wave in sensor it 

is possible to monitor the damage initiation and propagation in concrete element. 
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Fig. 4 Wave propagation at concrete plates at time points: 11.2 e
-5

 (s)
 
and 19.6 e

-5
 (s). 

4.2. Numerical model 2 - Steel plate 

Since in this case the thickness of the steel plate is very small, the propagation of the 

Lamb waves occurred. This was not the case in the concrete plate. The modeling of the 

Lamb wave propagation was performed by the application of the explicit finite element 

method with the diagonal mass matrix using software package ABAQUS/EXPLICIT. The 

dimensions of the analyzed model were 0.4x0.2m, with the hole diameter of R=0.015m. 

Mechanical properties of steel used for the modeling of the plate are shown in Table 2. 

Based on the Lamb wave propagation theory, the basic parameters for wave propagation 

modeling were calculated: longitudinal wave propagation speed 4943.3 (m/s), transversal 

wave propagation speed and wavelength 0.0494 (m). According to many authors’ 

recommendations, the number of finite elements per one wavelength should be 7 to 20, 

where the upper limit satisfies high frequency excitation incidents. In steel plate models 

16 finite elements were used per one wavelength. The same input signal was used as in 

case of the concrete models, defined by the equation (31). The applied time increment 

satisfies the critical time increment condition given by the equation (30). 
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Table 2 Material characteristics of a linear-elastic steel model 

Steel Value 

Density  (ρ) [kg/m3] 7850 

Modulus elasticity (E) [Pa] 210·109 

Poisson’s ratio (ν) 0.3 

4.2.1. Results and discussion 

In figures 5 and 6, the propagation of Lamb waves through thin steel plates is shown. 

Figure 5a shows the initial wave propagation from the position of the PZT actuator, 

bonded to the steel plate. Figure 5b shows the moment of wave reflection of the plate 

sides. All figures show the displacements perpendicular to the plate at the moment 

suitable for the visual inspection of the wave propagation through the plate. 

 

 

Fig. 5 Lamb wave propagation at steel plates at time points: 3.21 e
-5

 (s)
 
and 6.01 e

-5
 (s). 

In Figure 6a, the wave reaches the damaged part, which could be clearly seen together 

with the reflection of the plate sides. The damage reflects the waves which return toward 

the actuator and weakens the wave propagation toward the sensor (Figure 6b). Also, the 

transmitted wave has weaker intensity for the damaged plate compared to the undamaged 

one. The weakening of the propagating wave influences the output signal, as it was 

explained in the case of concrete plate, which can be used for monitoring the damage of 

the steel plates. In this paper, an undamaged model has not been analyzed. All of these 

notes refer to the application of the modeling process in the damage detection. 
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For better visual representation, the displacements shown for the case of Lamb wave 

propagation are scaled 50 to 100 times, depending on the figure. 

 

 

Fig. 6 Lamb wave propagation at steel plates at time points: 11.21 e
-5

(s)
 
and 14.43 e

-5
(s). 

6. CONCLUSIONS 

1. Modern active structural health monitoring methods of structures certainly represent 

the future of the monitoring civil engineering buildings, and their development is ever 

more expected in the future. Numerical methods and computer modeling play an 

important part in the development of these methods.  

2. This paper presents the explicit finite element method (EFEM) which is very 

efficient for modeling ultrasonic wave propagation through the concrete and steel 

plates. EFEM is the direct integration method using the principle of central differential 

and a diagonal matrix mass, which are the main characteristics of the efficiency of 

this method.  

3. Original numerical models of wave propagation through the concrete plate elements 

made with EFEM are presented in the paper. Also, explicit finite element method was 

used for modeling Lamb wave propagation in thin steel plate with damage.  

4. The paper analyzes obtained results and gives recommendations for using models for 

the purposes of structural health monitoring and non-destructive damage detection. 

5. The explicit FEM proved to be very effective in modeling wave propagation. For 

thin plates, it can be used without major difficulties and for relatively large 
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geometric models that are often used in practice. However, for concrete plates that 

have a higher thickness and dimensions their application is limited to laboratory 

samples of smaller dimensions. By increasing the applied frequency, the dimension 

of the final element decreases, which very often leads to application of a model 

with more than a million FEs. 

6. Finally, the authors recommend an explicit FEM implemented in the ABAQUS / 

EXPLICIT software for wave propagation modeling and consider it to be one of 

the most effective methods currently available. 
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NUMERIČKO MODELIRANJE ULTRAZVUČNOG 

PROSTIRANJA TALASA – KORISTEČI EKSPLICTINU MKE 

U ABAQUSU 
 

Monitoring konstrukcija podrazumeva integrisanje senzora i aktuatora, pametnih materijala, 

prenosa podataka kao i kompjuterskih analiza i simulacija u cilju detekcije, lokalizacije, procene i 

predviđanja stanja oštećenja u datom trenutku i kroz vreme. U radu je prikazana primena 

eksplicitne metode konačnih elemenata za modeliranje propagacije talasa. Metoda je direktna 

integraciona metoda koja koristi dijagonalnu matricu masa. Analizirani su primeri betonskih 

ploča i tankih čeličnih ploča kod kojih se javlja prostiranje Lamb talasa. Eksplicitna metoda 

konačnih elemenata se pokazala veoma efikasnom čak i za talase u ultrazvučnom opsegu. 

Efikasnost, laka upotreba i pouzdanost modela propagacije talasa izvedenih eksplictinom 

metodom konačnih elemenata mogu doprineti u razvoju novih ili unapređenju postojećih metoda 

monitoringa konstrukcija.  

Kljuĉne reĉi: eksplicitna metoda konačnih elemenata, monitoring konstrukcija, propagacija talasa, 

piezoelektrični senzori, detekcija oštećenja 


