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Abstract. Constitutive relations which describe engineering materials behaviour during 

the finite elastoplastic deformations are usually presented in the form of rates of stresses 

and strains. One of the possible approaches in the constitutive relations formulation is the 

additive decomposition of the total deformation rate into its elastic part and its plastic 

part. The elastic deformation rate contributes to any elastoplastic deformation at any 

stage. Hence, its exact and well-considered formulation is of particular importance and it 

has to be properly predicted by the corresponding material law. This is of great importance 

in particular when deformation cyclic processes are considered, in which case small 

errors may accumulate, even if the total deformation is small. 

The implementation of the most frequently used corotational rates, i.e. the Jaumann rate 

and the Green-Naghdi rate, in the hypo-elastic constitutive relations regarding small and 

moderate rotations gives accurate results for low number of repeated deformation cycles. 

With increased number of cycles, however, the implementation of these rates results in 

different and physically non-admissible material responses. This instability in results is 

particularly observable during the cyclic deformations with large rotations, which is the 

main subject of this work. In contrast to the aforementioned objective rates, the results of 

the logarithmic rate implementation into the hypo-elastic constitutive relations for the 

case of pure elastic deformation describe a physically stable process. 

Key words: hypo-elasticity, objective rate, logarithmic rate, finite cyclic deformation, 

ABAQUS, UMAT subroutine, large rotations 

1. INTRODUCTION 

In the contemporary Eulerian formulation of finite elastoplasticity the elastic behaviour is 

often described by a grade zero hypo-elastic law that requires the implementation of an 

objective rate instead of material time derivative. By reviewing the corresponding literature, it 
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may be observed that the objective Jaumann rate has been used by many researchers and has 

found a wide application in developing elastoplasticity theories. However, the shear 

oscillation phenomenon, firstly revealed by Lehmann (1972) and Dienes (1979), has 

questioned the correctness of application of the Jaumann rate in the constitutive relations for 

finite deformations. The work of Kojic & Bathe (1987), in which the authors showed that the 

application of the Jaumann stress rate produces residual stresses at the end of an elastic closed 

strain path, just confirmed the aforementioned conclusion on the inappropriateness of the 

Jaumann rate implementation in the constitutive relations even for the case of small 

deformations of cyclic nature. These findings have contributed to the development of 

numerous rates, corotational and non-corotational ones, such as the Truesdell rate, the Green-

Naghdi rate, the Cotter-Rivlin rate, the Durban-Baruch rate. Their implementation, however, 

has not completely solved the existing problems. Additionally, in the work of Simo & Pister 

(1984), it was shown that for the case of pure elastic deformation, hypo-elastic rate equation, 

considering all then known objective rates, fails to be exactly integrable, and by that, is unable 

to define an elastic behaviour of the material realistically. 

Although the theoretical studies have shown that the classical rates produce unstable 

solutions for finite deformations, some of them are still incorporated in widely used 

commercial finite element codes for structural analysis. For example, in the software 

ABAQUS, depending on the element type and constitutive model, the Jaumann rate or the 

Green-Naghdi rate are the available options to be selected by the solver (see ABAQUS 

documentations, 2013). 

Recently, the logarithmic rate has been in a focus of a number of studies by various 

researchers, who have proved that application of this rate in hypo-elastic constitutive 

relations successfully solves the problems related to shear oscillation and residual stresses 

for a closed strain path. For details, the reader is referred to references Xiao et al. (1997a, 

1997b) and Meyers et al. (2003, 2006). 

The present study employs one distinctive numerical problem, performed with a view 

toward investigating the logarithmic rate implementation in the hypo-elastic constitutive 

relations for the case of pure elastic deformation and verifying that this rate obeys the 

Bernstein's integrability condition (see Bernstein, 1960) to give an elastic relation, thus 

meaning that path-dependent and dissipative processes are not detected. According to the 

results of a present study, the logarithmic rate is proved to be an appropriate solution for 

the aforementioned problems, opposed to formerly-used objective corotational and non-

corotational rates. 

2. BASIC RELATIONS 

2.1. Kinematics 

If X denotes the position of a material particle in the Lagrangian, or reference, 

configuration and x denotes its position in the Eulerian, or current, configuration, the 

particle displacement can be described by the deformation gradient F as follows: 
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F J  (1) 

where J is the Jacobian determinant or shortly Jacobian. The velocity v of the same particle 

and the velocity gradient L are defined as:  
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In the previous relations a superposed dot denotes the material time derivative or 

ordinary time derivative when the variable is only a function of time. Applying the left polar 

decomposition theorem, the deformation gradient can be decomposed into a positive definite 

2
nd

-order tensor V, named left stretch tensor, and an orthogonal 2
nd

-order rotation tensor:  

 .RVF   (3) 

The square of the left stretch tensor, termed as the left Cauchy-Green tensor, is more 

convenient for numerical purpose than V and it is defined as: 

 .T2
FFVB   (4) 

The velocity gradient can be decomposed into its symmetric part, related to stretching, and 

skew-symmetric part, related to rotation:  

 .WDL   (5) 

The rate of deformation tensor, or the stretching tensor, D and the vorticity tensor, or 

the spin tensor, W are given respectively as: 
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2.2. Constitutive relations 

In the case of finite deformation, constitutive relations of elasticity or elastoplasticity are 

usually given in rate form. The occurrence of moderate to large rotations in finite 

deformations requires the introduction of the objectivity concept. Since the material time 

derivative is not an objective quantity in the Eulerian description, adopted here, the objective 

rates have to be introduced in the constitutive relations. From the general hypo-elasticity 

model, introduced by Truesdell, the simplified form of the hypo-elastic equation of grade 

zero is given by the following expression: 
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which represents the relation between the rate of deformation, i.e. the stretching tensor D, and 

the objective rate of the Kirchhoff stress tensor τ via the constant and isotropic instantaneous 

elastic compliance 4
th
-order tensor K. Here,  and E stand for the elastic constants, i.e. the 

Poisson’s ratio and the Young’s modulus, respectively, and 1 represents the symmetric 2
nd

-

order unit tensor. The Kirchhoff stress tensor, or weighted Cauchy stress tensor, τ is related to 

the Cauchy stress, or true stress,  as:  

 .στ J  (8) 

The objective stress rate, given here in a general form by Eq. (9), implies the 

introduction of the so-called spin tensor Ω, whose choice divides the objective rates into 



302 M. TRAJKOVIĆ-MILENKOVIĆ, O.T. BRUHNS 

two groups of corotational and non-corotational rates (for more details see Trajković-

Milenković, 2016, and the references therein): 

 .τΩΩτττ  


 (9) 

The corotational rates that are examined here are the Jaumann rate, the Green-Naghdi 

rate, and the logarithmic rate (the Log-rate), whereas the tested non-corotational rates are 

the Truesdell rate, the Oldroyd rate, and the Cotter-Rivlin rate. The spin tensors for the 

aforestated corotational rates are given as: 
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In Eqs. (10) - (12) bi(k) represent m distinct eigenvalues of the left Cauchy-Green tensor, 

and Bi(k) denote the corresponding eigenprojections of the same tensor. 

For the known spin tensors the corresponding objective rates are obtained from the 

general form given by Eq. (9): 

                ,
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                the Jaumann corotational rate, (13) 
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       the Green-Naghdi corotational rate, (14) 
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      the logarithmic corotational rate, (15) 
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               the Oldroyd non-corotational rate, (16) 
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                the Cotter-Rivlin non-corotational rate, (17) 
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    the Truesdell non-corotational rate. (18) 

The Truesdell rate is originally given for the Cauchy stress instead of the Kirchhoff 

stress in the form given in the last Equation. 
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3. CLOSED ELASTIC STRAIN PATH - HYPO-ELASTIC CYCLIC DEFORMATION 

In the engineering practice strain cycles and cyclic loading can frequently occur as well 

if the agencies are repeated in a large number of cycles. It has been proved analytically that 

even for small but cyclic deformations the residual stress may be appreciable even after a 

single cycle and it may become of quite a high value with an increasing number of cycles 

(see Xiao et al., 1999). Accordingly, the analysis of cyclic deformation paths takes the 

important place in structural analysis. For the hypo-elastic law (Eq. 7), the aforementioned 

objective stress rates, i.e. the Jaumann, Green-Naghdi, and logarithmic rates, as corotational 

rates, and the Truesdell, Oldroyd, and Cotter-Rivlin rates, as non-corotational rates, have 

been compared in closed single parameter elastic deformation cycles. 

In the numerical calculations the commercial software ABAQUS/Standard has been 

used in which material behaviour can be defined in terms of a built-in or a user-defined 

material model. In the latter case the actual material model is defined in the originally 

programmed code incorporated into ABAQUS via the user-defined subroutine UMAT. Here, 

Eqs. (13) - (18) have been incorporated in separate material models programmed in the user-

defined subroutine UMAT. The outputs have been compared mutually, also with those 

obtained using ABAQUS built-in material model, as well as with the results from the relevant 

literature.  

In the studies of Kojić & Bathe (1987) and Lin et al. (2003), a four-phase plain strain cycle 

was considered, which consists of extension, shear, compression, and return to original 

unstrained state. Here, the smooth strain cyclic deformation of the square element (see Fig. 

1) has been considered. The square element of size H is subjected to a combined 

lengthening and shearing process in the e1-e2 plane, such that the upper corners are moving 

along the ellipse with radii a and b. 

 

Fig. 1 Model and equations of deformation  

The deformation is described by equations given in Fig. 1, where and are 

dimensionless parameters. The parameter = b/H (0 < < 1) represents the measure of 

tension or compression, whereas = a/b is the measure of rotation to which the element is 

subjected. The parameter  in the last relation is the single parameter that describes the 

deformation of the square plate. The material of the plate has been considered as initially 

isotropic and stress free. The adopted values for the Young's modulus and Poisson's ratio are E 

= 210 GPa and = 0.3. 
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3.1. Large rotations 

In this Section a stress response of the square element (presented in Fig. 1), subjected to 

the deformation consisting of the combined axial deformation and large rotation is 

examined. The extension in 2-2 direction will be in the range of 0 - 10%, whereas the shear 

deformation is predominant with relatively large values up to 50%, i.e. the parameters and 

are taking the values 5 and 0.1, respectively. 

Development of the normal stresses and and the shear stress versus the 

deformation angle  for all the considered rates have been presented in Fig. 2 and 3, 

respectively. In Fig. 2, for the given rates, the normal stresses in 1-1 direction are marked 

with the dashed lines and the normal stresses are presented by the solid lines

The diagrams over a single cycle can generally be divided into three characteristic parts. 

The first one is that where  is in the range of 0 - 0.1. These are the values that are 

usually met as elastic deformations in metals, for example in civil engineering structures 

and during metal forming. It can be seen that in this part for all rates the plots are almost 

congruent. 



Fig. 2 Normal stress 11 and 22 single cycle development,  = 5,  = 0.1 

For rubber-like and composite materials and shape memory alloys, which can be subjected 

to very large elastic deformations, the second and the third part of diagrams are of great 

importance. The second part, where  is in the range of 0.1 - 0.53, is characterised with 

an almost identical stress response for the corotational rates, whereas the stress responses 

considering the non-corotational rates are drifting apart. Concerning the normal stress , it is 

evident from Fig. 2 that the Oldroyd and Truesdell rates implementation in the hypo-elastic 

relation gives very high values of while the reverse is observed for the Cotter-Rivlin rate 

that results in a rather low stress value The third part of the diagrams is beyond the limit of 

0.53 for  in which case the plots of shear and normal stresses even for the corotational 

rates are starting to drift apart.
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Fig. 3 Shear stress 12 single cycle development,  = 5,  = 0.1 

 

Fig. 4 Enlarged representation of 11 and 12 at the end of the first cycle,  = 5,  = 0.1 

At the end of the first cycle some residual normal and shear stresses for the Green-

Naghdi and Jaumann rates occur, whereas the non-corotational rates produce extremely 

high values of residuals. Only the Log-rate gives zero stress values at the end of the elastic 

deformation cycle (see Fig. 4). Here again, the normal stresses in 1-1 direction are marked 

with the dashed lines and the shear stresses are presented by the solid lines. 

If the continuum square element is subjected to a deformation that repeats cyclically, the 

stress response error is accumulating for all the considered rates except for the Log-rate. The 

development of normal and shear stresses during 10 and 100 cycles for the logarithmic rate 

has been presented in the upper and down part of Fig. 5, respectively. It can be seen that 
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the development of all Kirchhoff stress components is regularly periodical with constant 

magnitudes and without any residuals at the end of each cycle. 

 

  

Fig. 5 Ten and hundred cycle stress development for the Logarithmic rate,  = 5,  = 0.1 

The stress developments obtained using the Jaumann rate in the user-defined UMAT 

subroutine and ABAQUS built-in subroutine for hypo-elastic constitutive model have 

been presented in Fig. 6. From these plots it can be observed that the results for both 

models are completely congruent.  
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Fig. 6 Ten cycle stress development for the Jaumann rate using UMAT (up) and ABAQUS 

(down) model,  = 5,  = 0.1 

The development of normal and shear stresses using the Jaumann rate for 100 cycles 

has been presented in Fig. 7. It is obvious that the Jaumann formulation provides an 

oscillatory stress response for all stress components except for with variable magnitude of 

 and The residual stresses at the end of cycles are of non-negligible values and show 

an oscillating character as well (see Fig. 13). It can be concluded that the Jaumann rate 

gives results which are not in accordance with the physical behaviour of the materials. 

Therefore, this rate should not be implemented in the constitutive relations if large cyclic 

deformation occurs, ever for a low number of cycles (see Fig. 6). 



308 M. TRAJKOVIĆ-MILENKOVIĆ, O.T. BRUHNS 

 

Fig. 7 Hundred cycle stress development for the Jaumann rate,  = 5,  = 0.1 

In the case of moderate rotations, which are presented in detail in reference Trajković-

Milenković, (2016), the Green-Naghdi rate was a more reliable choice than the Jaumann 

rate. Here, it can be seen that very high values of residuals occur even after a single cycle 

and their values are monotonically increasing as it is depicted in Figures 8 and 9.  

 

Fig. 8 Ten cycle stress development for the Green-Naghdi rate,  = 5,  = 0.1 

As in the case of moderate rotations (see reference Trajković-Milenković et al., 2017), 

the stress responses of the Green-Naghdi rate formulation show the feature that the 

magnitude of the shear stress decreases as the number of cycles increases and after 

approximately 30 cycles its values are zero, which is a totally unrealistic result. After that, 
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the maximum shear stress is starting to increase monotonically. The plots for normal 

stresses  and are drifting away and changing their magnitude with the number of 

cycles (see Fig. 9). 

All the above stated remarks lead to the conclusion that for the case of cyclic elastic 

deformations with large rotations, the Green-Naghdi rate has to be excluded from the 

hypo-elastic formulations, except for only a few repeated cycles. 

 

Fig. 9 Hundred cycle stress development for the Green-Naghdi rate,  = 5,  = 0.1 

 

Fig. 10 Hundred cycle stress development for the Truesdell rate,  = 5,  = 0.1 

The Truesdell and the Oldroyd rates give similar stress responses as it is illustrated in 

Figures 10 and 11, where the developments of the shear stress drift apart and increase the 
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magnitude to the unrealistic high values of 30 times for the Oldroyd rate and 40 times for 

the Truesdell rate compared with the shear modulus. 

 

Fig. 11 Hundred cycle stress development for the Oldroyd rate,  = 5,  = 0.1 

 

Fig. 12 Hundred cycle stress development for the Cotter-Rivlin rate,  = 5,  = 0.1 

The results for the Cotter-Rivlin rate show great deviations from realistic values as 

well (see Fig. 12), and therefore, this rate must be excluded from the constitutive relation 

construction, too. 
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Fig. 13 Residual normal and shear stresses for various rates,  = 5,  = 0.1 

In Table 1 the normalised residual stresses after 10 cycles are given for all the examined 

rates. The applied elastic deformation is with very large rotations, i.e.  =0.2 and =10. It can 

be seen that except for the logarithmic rate the residual stresses considering the corotational 

rates are not negligible and for the non-corotational rates are of extremely high values. 

Table 1 Residual stresses after 10 cycles for  = 10,  = 0.2 

 Log-rate Jaumann 
Green/ 

Naghdi 
Oldroyd Truesdell Cotter/Rivlin 

G 0.45732e-4 0.035174 2.8971 -43.925 -69.584 -721.76 

G -0.43250e-4 -0.52436 3.1558 10.437 16.700 -24.353 

4. CONCLUSION 

In the case of finite deformations, prediction of the material behaviour is usually given in 

the rate form. In modelling of the elastic part of the deformation rates the hypo-elastic 

constitutive relation of grade zero is frequently used.  Since the material time derivative in the 

Eulerian description is not an objective quantity the objective rate has to be incorporated in the 

constitutive relation. 

The main objective of this work is the comparison of the recently-discovered logarithmic 

rate with actually mostly used objective rates for the case of pure elastic cyclic deformations. 

The range of validity is determined for the corotational objective rates, namely the Jaumann 

rate, the Green-Naghdi rate and the logarithmic rate, and the non-corotational objective rates, 

namely the Truesdell rate, the Oldroyd rate and the Cotter-Rivlin rate, in the case of finite 

cyclic deformation with large rotations.   

For that purpose, aforestated rates have been implemented into the commercial software 

ABAQUS/Standard using the user-defined subroutine UMAT. 
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Through the numerical procedure it is shown that the occurrence of finite rotations in 

total deformation significantly influences stress responses. For cyclic deformations with 

large rotations all the examined rates except the logarithmic rate produce high values of 

residual stresses at the end of the cycle, especially if the deformation is repeated in large 

number of cycles, which is the usual case.  

Taking all into account, the results of the presented study reveal the distinguishing feature 

of the logarithmic rate from remaining objective rates for the case of elastic deformations with 

large rotations. This rate is superior to others, since it is the only rate that gives reliable and 

physically admissible results for this kind of deformation, i.e. the only elasticity-consistent 

hypo-elastic constitutive relation would be the one based on the logarithmic rate. 

Consequently, the only correct choice among all objective rates regarding elastic deformations 

with large rotations would be the logarithmic rate. 

Therefore, our recommendation would be the implementation of the logarithmic rate 

into the hypo-elastic constitutive relations in modelling the large pure elastic deformation 

or the elastic part of the finite elastoplastic deformations, since it is the only one among 

all the examined objective rates that meet the requirement of the Bernstein's integrability 

condition, i.e. for whom path-dependent and dissipative processes are not detected even 

for a very large number of cycles. 
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NUMERIČKA ANALIZA KONAČNIH HIPOELASTIČNIH 

CIKLIČNIH DEFORMACIJA SA VELIKIM ROTACIJAMA  

Marina Trajković-Milenković, Otto T. Bruhns 

Konstitutivne relacije koje opisuju ponašanje materijala pri konačnim elastoplastičnim 

deformacijama su najčešće date u formi izvoda napona i deformacija. Jedan od mogućih pristupa u 

formulaciji ovih konstitutivnih relacija je aditivna dekompozicija ukupnog tenzora brzine deformacije 

na njegov elastični i plastični deo. Kako je doprinos elastične deformacije prisutan na svakom nivou 

ukupne elastoplastične  deformacije, tačna i unapred dobro razmotrena formulacija elastičnog dela 

tenzora brzine deformacije je neophodna. Rešenje ovog problema je primena odgovarajućeg 

materijalnog zakona u kome glavnu ulogu imaju objektivni izvodi, koji u slučaju konačnih deformacija 

moraju zameniti materijalni izvod. Izbor odgovarajućeg objektivnog izvoda koji figuriše u 

konstitutivnoj relaciji ima ključnu ulogu i najvažniji je cilj ovog rada. Ovo može biti od posebne 

važnosti kada se razmatraju ciklične deformacije, čak i ukoliko su ukupne deformacije male.  

U slučaju čiste elastične deformacije, implementacijom najčešće korišćenih korotacionih 

izvoda, t.j. Jaumanovog i Grin-Nagdijevog izvoda, u hipoelastičnim konstitutivnim relacijama pri 

malim i srednjim rotacijama dobijaju se tačni rezultati, dok je broj ponovljenih deformacionih 

ciklusa mali. Sa povećanjem broja ciklusa, međutim, implementacija ovih izvoda daje rezultate koji 

se medjusobno dosta razlikuju, a takođe često opisuju fizički nerealno ponašanje materijala. Ova 

nestabilnost u rezultatima je posebno uočljiva pri modeliranju cikličnih deformacija pri kojima se 

javljaju velike rotacije, što je glavni zadatak ovog rada. Suprotno predhodno pomenutim 

objektivnim izvodima, primena logaritamskog izvoda u hipoelastičnim konstitutivnim relacijama 

daje rezultate koji u slučaju čiste elastične deformacije opisuju fizički stabilan proces. 

Ključne reči: hipoelastičnost, objektivni izvodi, logaritamski izvod, konačne ciklične deformacije, 

ABAQUS, UMAT podprogram, velike rotacije 

 


