REVIEW OF THE POTENTIALS FOR QUANTITATIVE MICROSTRUCTURAL ANALYSIS OF POLYMER-MODIFIED BITUMEN

Miomir Miljković

DOI Number
https://doi.org/10.2298/FUACE250331002M
First page
Last page

Abstract


The objective of this article is to provide a critical synthesis and review of the potentials of the most relevant techniques and analysis procedures for styrene-butadiene-styrene (SBS)- and epoxy-modified bitumen based on fluorescence microscopy. This analysis considers SBS-modified bitumens with the mass fractions of SBS from 1.5 to 6 % and epoxy-modified bitumens with 10 to 90 % of epoxy. The content of polymeric phases plays a main role in the morphological characteristics and the percolation of microstructure. The SBS-modified bitumen shows a tendency towards distortion of droplet shapes into complex microencapsulated structures, thus significantly increasing particle’s bulk volume. This also seriously questions the assumption of continuum used in the linear viscoelastic testing and modelling. The microstructure of the epoxy-modified bitumen gradually evolved from an even dispersion of epoxy droplets to almost bimodal dispersion of bituminous particles within epoxy. By approaching the phase inversion, epoxy gradually encapsulates bituminous nuclei. Future research should focus on how microstructure affects the non-linear viscoelasticity of bitumen, especially regarding the formation of large polymeric agglomerations. Besides, an involvement of infrared microscopy is critical for understanding the interfacial chemical interactions of polymer and residual bitumen.

Keywords

polymer-modified bitumen, styrene-butadiene-styrene (SBS), epoxy resin, fluorescence microscopy, microstructure, morphology

Full Text:

PDF

References


Miljković, M., Wu, C., Jelagin, D., and Xie, H., 2024. Microstructural analysis of the phase sep-aration of epoxy-modified bitumen. Construction and Building Materials, 451,138596. https://doi.org/10.1016/j.conbuildmat.2024.138596

Long, K., Huang, C., Yang, Y., Qu, C., Huang, H., Ai, C., and Yan, C., 2025. Investigation of the rheological properties and aging performance of rock asphalt/thermoplastic polyurethane com-posite modified asphalt. Construction and Building Materials, 458, 139699. https://doi.org/10.1016/j.conbuildmat.2024.139699

Zhao, Y., Wu, X., Chao, Y., Liang, N., Zhou, P., Li, Z., and Mei, Y., 2024. Aging characteristics and microscopic mechanisms of SBS asphalt based on coupled light–heat–water aging. Con-struction and Building Materials, 456, 139190. https://doi.org/10.1016/j.conbuildmat.2024.139190

Zhu, X., Wang, Y., Miljković, M., Li, R., and Hao, G., 2024. Effects of polymer structure on the physicochemical and performance-related properties of SBS-modified asphalt binders subjected to short-term aging. Construction and Building Materials, 411, 134446. https://doi.org/10.1016/j.conbuildmat.2023.134446

Xie, H., Li, C., and Wang, Q., 2024. Thermosetting polymer modified asphalts: Current status and challenges. Polymer Reviews, 64 (2), 690–759. https://doi.org/10.1080/15583724.2023.2286706

Wu, C., Yang, H., Cui, X., Cai, J., Yuan, Z., Zhang, J., and Xie, H., 2024. Thermo-mechanical properties and phase-separated morphology of warm-mix epoxy asphalt binders with different epoxy resin concentrations. Molecules, 29 (14), 3251. https://doi.org/10.3390/molecules29143251

Li, F., Wang, Y., Miljković, M., Chan, K.M., 2022. Changes in the nanoscale asphaltene parti-cles and relaxation spectra of asphalt binders during aging and rejuvenation. Materials and De-sign, 219, 110808. https://doi.org/10.1016/j.matdes.2022.110808

Zhu, X., Miljković, M., Wang, Y., Hao, G., 2023. Property transitions of neat and styrene-butadiene-styrene (SBS)-modified asphalt binders from small, medium to large-amplitude oscil-latory shears. International Journal of Pavement Engineering, 24 (2), 2068548. https://doi.org/10.1080/10298436.2022.2068548

Zhu, X., Wang, Y., Miljković, M., Li, R., and Hao, G., 2024. Effects of polymer structure on the physicochemical and performance-related properties of SBS-modified asphalt binders subjected to short-term aging. Construction and Building Materials, 411, 134446. https://doi.org/10.1016/j.conbuildmat.2023.134446

Blom, J., Soenen, H., Katsiki, A., Van den Brande, N., Rahier, H., Van den bergh, W., 2018. In-vestigation of the bulk and surface microstructure of bitumen by atomic force microscopy. Con-struction and Building Materials, 177, 158–169. https://doi.org/10.1016/j.conbuildmat.2018.05.062

Blom, J., Soenen, H., Van den Brande, N., Van den bergh, W., 2021. New evidence on the origin of ‘bee structures’ on bitumen and oils, by atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). Fuel, 303, 121265. https://doi.org/10.1016/j.fuel.2021.121265

Hao, G., and Wang, Y., 2021. 3D reconstruction of polymer phase in polymer-modified asphalt using confocal fluorescence microscopy. Journal of Materials in Civil Engineering, 33 (1), 04020400. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003485

Miljković, M., Griffa, M., Münch, B., Plamondon, M., and Lura, P., 2024. Mesostructural evo-lution of fine-aggregate bitumen emulsion–cement composites by X-ray tomography. Interna-tional Journal of Pavement Engineering, 25 (1), 2283610. https://doi.org/10.1080/10298436.2023.2283610

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., and Wu A.Y., 2002. An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (7), 881–892. https://doi.org/10.1109/TPAMI.2002.1017616

Hung, C.-C. and Enmin Lan, S.Y., 2019. Image Texture Analysis: Foundations, Models and Al-gorithms. Cham: Springer. https://doi.org/10.1007/978-3-030-13773-1

Distante, A. and Distante, C., 2020. Handbook of Image Processing and Computer Vision, Vol-ume 2: From Image to Pattern. Cham: Springer. https://doi.org/10.1007/978-3-030-42374-2

Zhu, X., Miljković, M., Li, R., Hao, G., Chen, X., and Wang, Y., 2025. Non-linear viscoelastic and micromorphological properties of SBS-modified asphalt binder. Materials and Design (arti-cle in press), 113958. https://doi.org/10.1016/j.matdes.2025.113958

Distante, A. and Distante, C., 2020. Handbook of Image Processing and Computer Vision, Vol-ume 1: From Energy to Image. Cham: Springer. https://doi.org/10.1007/978-3-030-38148-6

Münch, B. and Holzer, L., 2008. Contradicting Geometrical Concepts in Pore Size Analysis At-tained with Electron Microscopy and Mercury Intrusion. Journal of the American Ceramic Soci-ety, 91 (12), 4059–4067. https://doi.org/10.1111/j.1551-2916.2008.02736.x

Holzer, L., Münch, B., Iwanschitz, B., Cantoni, M., Hocker, Th., and Graule, Th., 2011. Quanti-tative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells. Journal of Power Sources, 196 (17), 7076–7089. https://doi.org/10.1016/j.jpowsour.2010.08.006

Holzer, L., Iwanschitz, B., Hocker, Th., Münch, B., Prestat, M., Wiedenmann, D., Vogt, U., Holtappels, P., Sfeir, J., Mai, A., and Graule, Th., 2011. Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid at-mospheres. Journal of Power Sources, 196 (3), 1279–1294. https://doi.org/10.1016/j.jpowsour.2010.08.017

Soille, P., 2004. Morphological Image Analysis: Principles and Applications. 2nd ed. Berlin Hamburg: Springer-Verlag. https://doi.org/10.1007/978-3-662-05088-0

Salager, J.-L., 2006. Emulsion Phase Inversion Phenomena. Emulsions and Emulsion Stability, 2nd Ed. Boca Raton: Taylor & Francis Group. https://doi.org/10.1201/9781420028089-8

Pawar, A.B., Caggioni, M., Hartel, R.W., Spicer, P.T., 2012. Arrested coalescence of viscoelastic droplets with internal microstructure. Faraday Discuss, 158 (1), 341–50. https://doi.org/10.1039/C2FD20029E

Xie, Z., Burke, C.J., Mbanga, B., Spicer, P.T., Atherton, T.J., 2019. Geometry and kinetics de-termine the microstructure in arrested coalescence of Pickering emulsion droplets. Soft Matter, 15 (46), 9587–9596. https://doi.org/ 10.1039/C9SM00435A

Matsuda, M., Hayashi, H., Garcia-Ojalvo, J., Yoshioka-Kobayashi, K., Kageyama, R., Yama-naka, Y., Ikeya, M., Toguchida, J., Alev, C., and Ebisuya, M., 2020. Species-specific segmenta-tion clock periods are due to differential biochemical reaction speeds. Science, 369 (6510), 1450–1455. https://doi.org/10.1039/d2sm00063f


Refbacks

  • There are currently no refbacks.


ISSN 0354-4605 (Print)
ISSN 2406-0860 (Online)
COBISS.SR-ID 98807559