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Abstract. In this paper we apply multistep recurrence relations, as one of very simple 

and useful mathematical models. It is an efficient tool for solving many problems in 

mathematics, science, and technics. We also use generating functions, as a connection 

between real number sequences and real functions, and as a very smooth and efficient 

connection between the discrete mathematics and (continual) mathematical analysis. 

We present an application of multistep homogenous linear recurrence relations for 

modelling some processes in the control theory. Further on, we use the ordinary 

generating function aiming to find appropriate formulae for calculating members of an 

appropriate recurrence sequence. Finally, we show the application of this novel 

mathematical approach on one real example in the control theory. 
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1. INTRODUCTION 

There are a lot of problems and processes in mathematics, science, technology and 

other fields, where the recurrence relation is the most appropriate mathematical model for 

describing it (see [1]-[3]). It is sufficient that some problem or process can be described 
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or valued with some sequence of real or complex numbers, for example values calculated, 

or sampled or measured in discrete moments in time, and we can use such a mathematical 

model. Those values must be mutually connected via some relation (see [4]-[6]), expressed 

with an explicit mathematical formula. This relation usually involves k(k N) consecutive 

members of a real sequence, and it can be used for calculating the next value in a sequence, 

based on k previous values (see [6]-[8]). 

A typical problem with recurrence relations is to determine an explicit formula for 

calculation of any member of sequence an = a(n) (see [4]-[6]). The most common approach 

is using the characteristic equation of a given recurrence relation, which is precise, but not 

always easy to implement and not appropriate enough for the algorithmic approach and for 

programming.  

In [10], we already introduced and showed another approach, using the ordinary 

generating function for a sequence of numbers (see [4], [9], [11]-[13]). 

2. MATHEMATICAL BACKGROUND 

The recurrence relation for some real or complex sequence of numbers (an)nN is a 

mathematical term, given with 

          
1 2

,  ,  , ,  0,( )
n k n k n k n

F a a a a
+ + − + −

 =                                        (1) 

(see, for example, [1], [6]) which is the relation in an implicit form, or  

                ( )
1 2
, , , ,

n k n k n k n
a f a a a

+ + − + −
=                                             (2) 

which is the relation in an explicit form. In both formulas, n are index of this sequence 

and k is order of this relation. If mappings F in (1) and f in (2) are linear, then we have a 

linear recurrence relation. Without loss of generality, as in [10], in the rest of this 

research paper, we will consider only linear recurrence relations (see [1], [5]- [6]).  

The algorithm for calculating members of the real sequence is shown on Fig. 1: 

read (a0, a1… ak-1); 

for (i=k, i<=n, i++) 

{ai = f(ai-1, ai-2,…, ai-k)=0;      % find next sequence member 

  write (ai); 

  for (j=0, j<i, j++) 

       aj = aj+1;                         % relocate sequence members 

} 

Fig. 1 Algorithm in meta language (see [13]) 

The recurrence relation is a very useful model in both cases, for real and for complex 

sequences. In this paper, without loss of generality, we will consider only real sequences. 

In order to show our method and main results, also without loss of generality, we will 

use recurrence relations with small values k = 2 (two-step recurrence relation) or k = 3 

(three-step recurrence relation). For a successful use of the recurrence relation, it is 

necessary to have k starting values, i.e., to know values of 0 1 1
, , .

k
a a a

−  . 
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The most common approach for obtaining an explicit formula for calculating members of 

a recurrence relation is by using the characteristic equation of a given recurrence relation. 

For example, if a linear recurrence relation  

1 1 2 2
   0,

n k n k n k n k n k n k n n
a a a a   

+ + + − + − + − + −
+ + ++ =                       (3) 

with starting conditions  

        
0 0 1 1 1 1 0 1 1

,   ,    ,  ,  ,   ( ,)
k k k

a A a A a A A A A R
− − −

= =  =                         (4) 

is given, characteristic equation is 

1 2

1 2
           0,

n k n k n k n

n k n k n k n
       

+ + − + −

+ + − + −
+ + ++ =  

i.e., 

1 2

1 2
         0,

k k k

n k n k n k n
      

− −

+ + − + −
+ + ++ =  

Solutions of this algebraic equation are real or complex numbers 
1 2
, ,

k
    and the 

formula for calculating any member of this sequence have a form 

1 1 2 2
  .

n n n

n k k
a C C C  = + +                                             (5) 

Constants
1 2
, ,

k
CC C can be obtained from starting conditions (4). 

Another approach (see [10]) to a problem of obtaining the formula for calculation of 

members of the recurrence sequence is by using the ordinary generating function, 

defined with (see [6], [9], [12]) 

0

·( )
n

n

nF a tt


=

=  . 

For a linear recurrence relation (3), we can obtain ordinary generating function using 

following steps 

1 1 2 2
   0,
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Then we have 
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1

1 0

1

1 0 1( )  ,( +  ) ( ) k

n k n

k k

n k n k n kF t t at t a a t    −

+ +
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+ + − −= ++++ +  

and the generating function is 

( )
1 2 1

0 1 1 0 2 1 0

1

+  
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where starting conditions are 0 0 1 1 1 1 0 1 1
,   ,    ,  ),  ,  (  

k k k
a A a A a A A A A R

− − −
= =  =   . 

This function is rational and after the decomposition on simple fractions, using well-

known summation of geometric series 

0

1

1

n

n

t
t



=

=
−

 ,                                                             (6) 

we can obtain an explicit formula for calculating any member of this sequence, that will 

have the same form like in (5) (see [10]). 

3. METHOD 

There are various systems and processes in control theory (as well as in other areas and 

fields), that we usually divide into two main groups: continual systems and discrete systems. 

We should also notice a big difference between discrete systems (discrete by their nature) and 

discretized models of continual systems (see [14]). Anyway, the mathematical apparatus for 

analysis of discrete systems and analysis of discretized systems are the same. Mathematical 

models of continual systems are discretized when applying a discrete control [14]. The 

identification of the process and discretization can be done in two ways: by applying some 

method for identification of continual processes, and then to discrete it; or to discrete continual 

model during identification of process. Discrete processes are identified to mathematical 

models directly. Discrete processes in industry are, in fact, very rare. Their discrete character 

is a consequence of some discretization mechanism, for example by embedding some discrete 

measure instruments [14]. The result of such identification is the linear discrete mathematical 

model 

1 1

( 1) ( )1 ()( )
n n

i i

i iy ka y k b x mn k
= =

 − + − − += −   

This model is with noise (k) and delays, where m is the number of delay cycles. 

Further on, we will deal with processes and systems in an ideal case, so models will be 

without noise and without delay, in the simplified form 

1

( 1( ) )
n

i

iy a y kn 

=

−=  . 

Suppose that we have some process (P) and that this process is described with some 

real values, calculated in discrete moments of time. Let those values be states and/or 

outputs of this process. This process can be shown in a form of diagram (see Fig. 2).  

State and output of this model in each moment is described with a number an, n = k, 

where k = 0, 1, 2... in particular successive moments tk. Each subsequent state is 
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determined by k previous states and mathematical model of this process are described 

with some relation  

                ( )
1 2
, , , ,

n n n n k
a f a a a

− − −
=                                                  (7) 

with starting conditions (4), that is of same type as relation (2). 

 

Fig. 2 Block diagram for system characterized with relation (7) 

Without loss of generality, we will take 2k = , aiming to have the simpler form of 

recurrence relation, so called “two-step recurrence relation”. 

 

Fig. 3 Block diagram for system characterized with relation with k=2 

Mathematical model of this process is 

0 0 1 1 0 11 2( ), ( ), , ,,
n n n a Aa af A A A Ra a− − = = =  

or with “shifted” indexes, 

0 0 1 1 0 12 1( ), ( ), , ,,
n n n a Aa af A A A Ra a

+ + == =   

or in the implicit form 
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+ + + +
+ + = = =   

For a linear recurrence relation (7), we can obtain an ordinary generating function 

using following steps 

2 2 1 1
  0,
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Then we have 

2 1 2
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and generating function is 
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+
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where starting conditions are 0 0 1 1 0 1
( ),   , ,  a A a A A A R= =  . 

This function is rational and after the decomposition on simple fractions, using (6), we 

have F(t) in an explicit form. We will assume, without loss of generality, that poles of 

function (8) are real (not complex) and unique, and that all coefficients in (7) are real. 

Other cases could be a topic for some further research. 

 4. APPLICATION  

In order to validate the proposed method, G.U.N.T. Flow Control Trainer RT522 (Fig. 

4) is a comprehensive structure equipped with modern industrial components. The pump 

delivers water from the tank through a piping system. The fluid flow is measured using 

an electromagnetic sensor, which allows further processing of the measured quantity by 

giving a standardized current signal at the output. The flow indicator is a rotometer. An 

industrial digital controller is used for control. The actuator, connected in a closed non-

return loop, is an electromotive valve. The manual ball valve, allows defining the 

disturbances that are introduced into the system. The controlled parameter Ks and the size 

to be manipulated and written directly to the two-channel line recorder. 

The system also contains management software (RT650.50) connected to a computer. 

The tank has a capacity of 30l, the centrifugal pump has a power of 250V with a maximum 

flow rate of 150 l/min and a speed of 2800 rpm. The maximum flow rate of the electromagnetic 

sensor is 6000 l/h. The control cabinet contains a power switch, a safety STOP button, a pump 

start button, a control terminal for monitoring output variables and manual control of the 

system. The control cabinet also has a printer that automatically prints the values of the output 

variables. A closer view of the entire system with the tank is shown in Fig. 5. The system is 

connected via a computer, which supports the LabView software package, and with auxiliary 

applications it is possible to set, control and monitor the operation of the system. 
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Fig. 4 G.U.N.T. Flow Control Trainer RT522 

 

Fig. 5 A closer view of the entire system 

 

Several experiments have been performed to identify the system in the form of a 

transfer function. The idle system is excited by setting the desired system response to a 

value of 1400 l/h. Experimental results are given in Fig. 6.  

 

 
Fig. 6 Experimental results 

Using the graph-analytical method [14] of the bounce response of the system for the 

transfer function, the following function was obtained: 
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2

1
( )

5.20386 4.59700 1
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25.20386 ( ) 4.59700 ( ) ( ) ( )s Y s sY s Y s X s+ + =  

which leads us to a recurrence relation  

 

2 15.20386 4.59700 1n n na a a+ ++ + = .                                  (9) 

 

Now we will apply the algorithm introduced in [10]. Having in mind that tanks are empty 

at the beginning, we will assume that a0 = 0, a1 = 0, as start conditions. Although our 

problem is non-homogenous the linear recurrence relation (right side of equation (9) is 

not equal to 0), we can apply same method as with homogenous relations, to obtain an 

explicit formula for an. 
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so ordinary generating function is 
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Suppose that we can make decomposition  

( )
1 0.38759 0.495787

A B C
F t

t t t
=

− + −
+ + , 

then we will come to the system of linear equations 
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with solutions 0.27466A = , 0.02355B =  and 0.10605C = . So, we have 
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Generating function is 
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Explicit formula for calculating numbers of real sequence na is 

0.06076 ( 1) 0.21390
0.27466

0.38759 0.49579

n

n nn
a

 −
= + + . 

We can use the obtained formula for the calculation of any member of this real sequence, 

i.e., we can calculate value that characterizes our system. 

5. CONCLUSION 

Multistep recurrence relation is one of the useful mathematical models and also a very 

simple tool for many problems in mathematics, science and technology. So, there is a 

possibility to apply multistep linear recurrence relations for modelling problems in the 

control theory, what is the goal of this paper. An ordinary generating function of real 

sequence is used, in order to obtain formulae for calculating members of a sequence. 

Generating functions are just one of mathematical tools for the connection between real 

number sequences and real functions. 

The main purpose of our method is to obtain function, expressed with an explicit 

formula (continual model) that represents a recurrence sequence of real numbers, which is a 

problem with a completely discrete nature. This method is some kind of a “D2C” (discrete-

to-continual) smooth transformation. 

This approach, which is here applied on some simple problems in the control theory, is 

just an introduction into a wide variety of possible applications for solving problems from 
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other fields (computer science, economy, biology, digital signal processing…), that have 

similar mathematical properties. It also opens wide new frontiers for further research in this 

field of applied mathematics. 
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