
FACTA UNIVERSITATIS  

Series: Automatic Control and Robotics Vol. 21, No 1, 2022, pp. 37 - 46 

https://doi.org/10.22190/FUACR220321004А 

© 2022 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Regular Paper 

ONE-BIT QUANTIZER PARAMETRIZATION  

FOR ARBITRARY LAPLACIAN SOURCES   

UDC (621.391:517.988) 

Danijela Aleksić, Zoran Perić 

University of Niš, Faculty of Electronic Engineering,  

Department of Telecommunications, Republic of Serbia 

Abstract. In this paper we suggest an exact formula for the total distortion of one-bit 

quantizer and for the arbitrary Laplacian probability density function (pdf). Suggested 

formula additionally extends normalized case of zero mean and unit variance, which is 

the most applied quantization case not only in traditional quantization rather in 

contemporary solutions that involve quantization. Additionally symmetrical quantizer’s 

representation levels are calculated from minimal distortion criteria. Note that one-bit 

quantization is the most sensitive quantization from the standpoint of accuracy 

degradation and quantization error, thus increasing importance of the suggested 

parameterization of one-bit quantizer. 
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1. INTRODUCTION 

Over the last few decades, numerous quantization methods have been suggested, which 
try to find a manner for minimizing the number of bits for real-valued presentations, 
striving for as higher as possible presentation accuracy [1]-[5]. The area of quantization 
application has constantly spread starting from traditional areas, i.e. information theory and 
digital signal processing, to come to the forefront in neural network (NN) field, primarily in 
resource-constrained environments [6]-[8]. While quantization in digital signal processing, 
as the signal compression method, fundamentally tries to minimize the difference between 
the quantized and the original signal, this minimization of inevitable quantization error is 
not recognized as the main target for quantized NN (QNN) models [6]-[8]. Instead, the 
main goal in indisputably attractive QNN area is to find the appropriate reduced-precision 
presentations, still generalizing well and attaining the high or satisfactory accuracy of the 
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applied NN model. Application of quantization, individually or jointly with some other 
method that significantly shrink an NN model size, one can see as an important driving 
force for the NN deployment on edge devices, especially on IoT devices [9]. Generally, to 
benefit from quantization deployment in hardware-dependent NN solutions, it is important 
to select a preferable quantizer model and to leverage the knowledge about quantizers and 
their parameterization [1].  

Moreover, here it is very important to emphasize that all data or datasets in many real-

world scenarios are not accessible due to privacy, proprietary or security reasons. Zero shot 

quantization (ZSQ) anticipates the quantization scheme that does not require an access to the 

original data [6]. Recently, much attention has been given to automatic speech recognition 

(ASR) models [10]. In paper [10], to calibrate and finetune the quantization model, synthetic 

data are emerged or generated. These synthetic data directly accommodate to the internal data 

statistics by the minimization of the Kullback-Leibler (KL) divergence. Here synthetic data, 

that capture data pattern are leveraged to overcome the drawback of original data. If the access 

to the original data is infeasible, an obvious question arises - how to quantize this data if ultra 

low-bit presentations are required in hardware-constrained environments?  

In the scope of this paper for ultra low-bit quantizer solution of particular interest are 

quantizer design and its optimization to the input data. We want to tackle the quantizer 

efficiency challenge, primarily important in extremely low-bit quantization, due to only two 

representations available. To address one-bit quantization, that poses a real challenge, we do 

not use the ACIQ method for the analytical clipping range determination [11], since clipping 

effect nullify the overload distortion. Instead, we indeed calculate the total distortion for the 

unrestricted Laplacian probability density function (pdf) of arbitrary mean and standard 

deviation. The reason why we deal with the Laplacian distribution with heavy tails is because 

it well describes many real-world scenarios or phenomena [12]. In particular, our contributions 

are as follows: 

▪ We propose an exact formula for the total distortion when the one-bit quantizer is 

used, while the input data are well described with an unrestricted arbitrary 

Laplacian pdf, especially having in mind that most of the data or datasets do not 

necessarily tend to the zero mean and unit variance. 

▪ Our framework supports the additional optimization of the symmetric one-bit 

quantizer for the arbitrary Laplacian distribution. 

The rest of paper is organized as follows: Section 2 describes the main motivation for 

accepting an arbitrary Laplacian pdf in our analysis, while Section 3 offers one-bit quantizer 

parameterization for the assumed Laplacian pdf. Section 4 provides the discussion on the 

performance achieved with the proposed quantizer. Section 5 summarizes and concludes on 

our research results. 

2. WHY ARBITRARY LAPLACIAN PDF? 

The Laplasian pdf, given by (1) is unimodal, log-concave pdf with a more pronounced 

peak and heavy tails [1]: 
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where μ is the mean and σ is the variance of input x. 
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Namely, the Laplacian distribution plays a prominent role in the probability theory, 
statistics and data modelling, since there is a widespread opinion that the Laplacian 
distribution fits many natural, economical and social phenomena [13]. Since in many real 
life situations, there is no prior information about data distribution, application of some 
well-known pdf becomes unavoidable. This explains our motivation to consider the 
arbitrary Laplacian distribution in the analysis presented in this paper.  

Broadly speaking, many datasets exhibit some skewness and do not conform to the 
symmetry rules. Since we want to qualify our one-bit quantizer for special purposes 
where the low-complexity of hardware is one of the prerequisites, we will suggest the 
symmetric quantization model. 

Recall that μ is a measure of the central tendency, determining where the values of x 
tend to be clustered, while σ points how x samples are spread out from μ to form the 
measure of dispersion [1]. As the pronounced peak is a specific feature of the Laplacian 
pdf, the largest number of samples x is concentrated around the mean value μ. Referring 
to our paper [14] we came to interesting conclusions for medium and high bit-rates when 
forming two granular regions for the restricted Laplacian pdf - Central Granular Region 
(CGR) and Peripheral Granular Region (PGR). We have shown that in general stands - 
the higher the bit rate, the higher the percentage of samples falls in the narrower CGR 
area. More precisely, for the amplitude dynamic defined by [1] and bit-rate 5bit/sample, 
85.97% of the samples were concentrated in the CGR covering 31% of the granular 
region, while for the 8bit/sample, 92.37% of the samples falls in the CGR covering 
25.89% of the granular region. As we want here to address the one-bit quantizer with 
only one pair of the quantization cells and symmetrically placed represents, we believe 
that we can expect that represents are close enough to the mean.  

To the best of the authors’ knowledge, an analysis of the influence of the low-bit 
quantizer’s parameterization for the Laplacian pdf on Signal to Quantization Noise Ratio 
(SQNR) or NN model’s accuracy has been addressed in numerous papers [15]-[18]. By 
applying two-bit and three-bit uniform quantization on the same NN model during the 
post-training phase, as in [15] and [16], the pure influence of the applied quantization to 
the NN model’s accuracy is isolated. For the known Laplacian-like distribution of 
weights and MNIST dataset, in [15] and [16] we have proved that the quantizer design and 
relevant quantizer’s representation levels had a stronger impact on the NN model’s accuracy 
for the two-bit quantization case. Our anticipation is that the quantizer’s representation levels 
determination is even more prominent in the one-bit quantization case.  

Relying on a plethora of previous conclusions about uniform or nonuniform 
quantization [14], [19]-[21], further enhancements of one-bit quantizer parameterization 
are intuitively motivated by the better perceiving of the mean and variance for the 
arbitrary Laplacian pdf, particularly when the pdf of amplitudes being quantized was 
known in advance. Moreover, as a unique contribution of this paper we emphasize an 
analysis that outputs exact formulas for the simpler design and performance assessment 
of the one-bit quantizer. 

3. ONE-BIT QUANTIZER PARAMETERIZATION 

At the very beginning of this section, we recall briefly the basics of the quantization 

theory. An one-level quantizer Q2 is defined by mapping Q2 : ℝ→ Y [1], where ℝ is a set 

of real numbers, Y = {y1, y2}⸦ ℝ is the code book of size 2 containing representation 
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levels yi, (i = 1, 2). With the one-bit quantizer Q2, ℝ is partitioned into 2 one-side 

unbounded in width quantization cells i (i = 1, 2), where yi specifies the i-th codeword 

and is the only representative for all real values x from i. Note that these representation 

levels are symmetrically placed around 0, since we address symmetric one-bit quantizer. 

Let us calculate for arbitrary μ ≥ 0 and σ the total distortion, composed of D- and D+, 

where D- and D+ are distortions in negative and positive axis parts of the assumed pdf, or 

in quantization cells 1 and 2, respectively. Foremost, we will give an exact formula for 

arbitrary chosen represents yi, (i = 1, 2), later adapted to our case with the assumed 

symmetry of representation levels. 

 

Fig. 1 Symmetrically placed representation levels for an arbitrary Laplacian pdf  
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Substituting (1) in (2) and (3) yields: 
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By further reorganization of formulas (4) and (5) we obtain: 
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Finally, we find out the total distortion as: 
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Further we define SQNR for the one-bit quantization case and the arbitrary unrestricted 

Laplacian pdf as: 
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In the special case of zero mean and unit variance (μ = 0 and σ2=1), or in normalized 

case, denoting distortion by Dn we calculate: 
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In our case with the symmetry of representation levels stands that y2 = - y1, distortion Ds 

for assumed symmetry condition becomes: 
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Finally, we calculate the total distortion for the normalized case with symmetrically placed 

representation levels as: 
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By minimizing the distortion, that is, by setting the first derivative of so obtained distortion 

Dns with respect to y2 equal to zero: 
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Here the positive representation level y2 is determined as: 
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whereas Δ shows how far the representation level y2 is from mean μ, while y1 is distant 

from mean for 2μ+Δ (see Fig.1). 
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By further reorganization of (16) we have: 
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Substituting (16) in (10) yields: 
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4. NUMERICAL RESULTS 

In this section, we discuss achieved results as the outcomes of the parameterization for 

symmetrical one-bit quantizer. Let us remind that in previous section we have given an exact 

formula for SQNR calculation (19) when the symmetrical one-bit quantizer is used, while the 

input data are well described with an unrestricted arbitrary Laplacian pdf. Therefore, we find 

an interest to analyze how quantization of data having arbitrary Laplacian pdf affects data 

representation levels for the assumed symmetry of quantizer design.  

Paying attention to the Eq. (19), one can note that SQNRs for symmetrically placed 

representation levels depends on μ/σ (see Fig.2) 
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Fig. 2 SQNRs dependence on μ/σ for symmetrical quantizer design 
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Table 1 SQNRs for some specific μ and σ. 

μ σ SQNR [db] 

0 arbitrary 3.0103 

1 1 2.0299 

1 2 2.7590 

1 5 2.9856 

2 1 0.8036 

2 2 2.0299 

2 5 2.8616 

5 1 0.0262 

5 2 0.4743 

5 5 2.0299 

 

Table 1 shows SQNRs for some specific μ and σ values. The highest SQNRs is achieved 

for zero mean and arbitrary variance, while SQNRs rapidly decreases with an increase of mean 

and for unit variance. If μ and σ are the same, SQNRs amounts 2.0299. 

For zero mean pdfs, representation level y2 = σ / 2  depends only on σ. In case of non-

zero mean pdfs, y2 = μ (1+ Δ/μ) and according to Δ/μ dependence on μ/σ (see Fig. 3) we 

can conclude that μ predominantly influences y2, as well as its symmetrical pair y1. 
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Fig. 3 Δ/μ dependence on μ/σ  

For pre-trained QNN, customized for some specific task, further reused as the foundation 

for an another task, in case of aggressive one-bit quantization, QNN performance can be 

tremendously degraded. To alleviate this inevitable degradation, more precise mean and 

standard deviation assessment one can set as an indispensable prerequisite. In most of the 

performance analysis, zero mean and unit variance are accepted as the most common 

conditions of the ground-up quantizer design. Here we want to analyse an influence of two 

main parameters, μ and σ, that well describe Laplacian pdf, since their determination holds 

the key to improving the quantization’s efficiency. 

In doing so, we will analyse the Kullback-Leibler (KL) divergence for two arbitrary 

Laplacian pdfs [22], [23] (see Table 2 Case 1), while in general stands that: 
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 1 1 2 2 2 12 1
KL( ( , ) ( , )) KL( ( , ) ( , ))p x p x p x p x        . (20) 

Case 1 shows the measure or divergence of 1 1( , )p x    from 2 2
( , )p x   , while Eq. 

(20) underlines the inequality of reciprocal divergences of the same pair of functions 

1 1 2 2
{ ( , ), ( , )}p x p x    . For two identical pdfs the KL divergence is zero, while for a 

large deviation of μ1 from μ2 and σ1 from σ2, KL divergence is large. 

Kullback-Leibler divergence, as a similarity measure, is also used to specify extra bits 

required to describe a pair of distributions. If pdfs differ significantly, there is a need to 

provide additional bits that is not desirable in low-bit presentations. 

If one of the pdfs implies a normalized case of zero mean and unit variance, we can 

find a KL divergence in cases where this normalization characterizes the first or the 

second pdf (Case 2 and Case 3, respectively). Note that the KL divergence given in Case 

5, for a specific case of σ1 = 2  does not depend on μ1. In contrast, applying similar 

condition σ2 = 2 in Case 4, one can notice that the KL divergence indeed depends on μ2, 

that additionally confirms an inequality statement given by (20). 

Table 2 KL divergence for some specific cases. 
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If both pdfs have the same σ1 = σ2 = σ (Case 6) the KL divergence depends on σ and 

difference of means, while for μ 1 = μ 2 = μ, the KL divergence depends only on σ1 / σ2 

(Case 7). 
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Since pre-trained model can be accommodated to the normalized case, by calculating 

the KL divergence similar as in paper [10], one can estimate μ, σ or μ/σ and specify 

symmetrical representation levels of one-bit quantization model according to the suggested 

formula (16). 

As the total bit rate R in signal processing area according to formula R = rfixed + radd 

/M [24], shows a strong dependence on radd and M, where radd – is the bit rate for 

additional information (here for μ and σ) and M – denotes the frame size, we should also 

pay attention to the analysis of R for the suggested one-bit design. ( rfixed = 1, see Table 

3). Our NN model architecture specified in [15,16] consists of three FC (dense) layers. 

MNIST training and testing datasets are loaded and then flattened into one-dimensional 

vectors of 784 (28*28) elements. First two FC layers consist of 512 nodes, where the first 

layer accepts an input shape of (784,), so the overall number of bits for that level can be 

calculated as M = 784x512, and the total bit rate is R = 1+32/784x512 = 1,00008 ≈ 1. We 

can notice that neural networks are less demanding in terms of additional bits for side 

information transmitting, as we concluded - the larger the NN model, the closer the bit 

rate is to rfixed or to R = 1, in one-bit quantizer case.   

For the most common used presentations with M = 32 and M* = 16 bits, required total bit-

rates are shown in Table 3. As for low-bit presentations, it is desirable that additional 

information is displayed with as few bits as possible, so that M  ≥ 120 frame sizes should be 

preferred. 

Table 3 Total bit rate R for one-bit quantizer in signal processing area. 

rfixed radd M R radd
* M* R* 

1 32 20 2.6 16 20 1.8 

1 32 40 1.8 16 40 1.4 

1 32 120 1.267 16 120 1.133 

1 32 240 1.133 16 240 1.067 

5. CONCLUSION 

In this paper, an importance of determining of the exact formula for one-bit quantizer’s 

total distortion is highlighted in the case when the data are well described by an arbitrary 

Laplacian pdf. Aiming for the simplicity of quantization design, symmetrical quantizer is 

proposed, as well as the symmetry of representational levels. Note that precise determination 

of the mean and variance is a prerequisite to achieve the high quantization model's accuracy, 

since quantization accuracy can be tremendously degraded in the case when the mean and 

variance are not well adjusted. We have shown that the mean has a predominantly important 

influence on the representation level determination in the non-normalized case, since one of 

the representation levels is close to the mean. One-bit quantizers are especially convenient 

in highly proliferated resource-constrained devices thus increasing the need for the simple 

but accurate low-bit quantizer design. 
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