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Abstract. In this paper, we introduce a low complexity algorithm for estimation of the 

channel transfer function in the OFDM communication system that is using a scattered 

pilot symbol grid. Although, the use of the scattered pilot grid enables implementation 

of the flexible, and adaptive radio interface, it suffers from a high estimation error at 

the edges of the symbol sequence. Due to the sampling in time, and frequency, the 

signal is circularly expanded in both domains, and this has to be taken into account 

when the signal is processed. The proposed algorithm is shaping the pilot symbol 

estimates in time, and frequency domain, such that the aliasing in both domains are 

reduced or eliminated. We achieve a significant reduction of the estimation error, with 

a linear increase in computational complexity. 
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1. INTRODUCTION 

Modern communication systems require accurate channel state information estimates in 

order to perform a coherent detection that is needed to achieve high data rates. Both the 

orthogonal frequency division multiplexing (OFDM), and the single carrier with frequency 

domain equalization (SC-FDE) require accurate and reliable estimates of the channel transfer 

function (CTF) that can be obtained using known pilot-symbols at the price of a reduced 

spectral efficiency. The pilot-symbol aided CTF estimation (PACE) is important because it 

enables us to separate the estimation process from other physical layer functions such as the 

modulation and coding scheme (MCS) choice or resource allocation. A sophisticated pilot 

design should achieve a trade-off between the attainable accuracy of the channel estimate and 
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the bandwidth efficiency in terms of the pilot overhead. These requirements are achieved in 

certain scenarios by using a scattered pilot grid, where pilot symbols are equidistantly spaced 

in time and frequency. It facilitates a flexible and adaptive air interface pilot aided channel 

estimation. 

Pilot symbols are scattered in time and frequency such that the Nyquist sampling criterion 

is satisfied. The interpolation over pilot symbols suffers from the edge effect, where the 

estimation error significantly increases near the edges of a sequence to be estimated. It is 

particularly the case near the beginning and at the end of a frame in time, as well as for the 

subcarriers at the edges of the frequency bandwidth. An estimate of CTF for data subcarriers 

is obtained by the interpolation between pilot symbols. 

The optimum solution for PACE is given by the Wiener interpolation filter [1], [2]. 

However, an optimum Wiener interpolation filter may be too complex for a practical 

implementation, because of large dimensions, and the requirement of the channel statistics 

knowledge. The computation of the filter coefficients in real time has a significant 

computational load. The computational complexity of the optimum Wiener interpolation filter 

can be reduced by reducing the dimension and by matching the model to a typical worst case 

scenario, so the filter coefficients can be precomputed and stored, [3]. A CTF interpolation 

that is based on the discrete Fourier transform (DFT) is computationally more efficient [4]. 

The DFT interpolation can be performed very efficiently by two successive DFTs and zero 

padding. In this case, we rely on the fact that the channel impulse response (CIR) in the time 

domain is time limited, and that the CIR components are mutually uncorrelated. 

Unfortunately, since the relative time delay between the CIR components is an exponential 

random variable, and CIR components are not equally spaced, after DFT of the frequency 

domain samples, there will be a leakage, and aliasing between the CIR components. The 

aliasing between the CIR components results in a mean-squared-error (MSE) floor that is 

much higher than that for the Wiener interpolation. The DFT interpolation MSE error floor is 

reduced by additional processing using the window function in the frequency domain, and by 

placing pilot symbols at the first, and at the last subcarrier. Additionally, in [1] the authors use 

the Wiener filtering in the time domain to reduce the aliasing, which unfortunately requires 

the knowledge of the CIR statistics, and assumes unrealistically that the CIR components are 

equally spaced. The same model mismatch is used in [5] to improve the performance of the 

DFT interpolation, and reduce the edge MSE by extrapolating the pilot tones into the guard 

bands by using the Wiener filter. Model mismatch assumes a worst case uniform power delay 

profile with maximum time delay spread. The estimator in [5] significantly reduces the MSE 

error floor, and at medium signal-to-noise ratios (SNRs) achieves the same performance as the 

optimum Wiener interpolation filter. Recently, there have been several proposals to use deep 

neural networks for the CTF estimation. In [12], the time-frequency grid of the channel 

response is modeled as a two/dimensional image which is known only at the pilot positions. 

This channel grid with several pilots is considered as a low-resolution image and the estimated 

channel as a high-resolution one. In the first step, an image super-resolution algorithm is used 

to enhance the resolution of the low/resolution input. Secondly, an image restoration method 

is utilized to remove the noise effects. The resulting algorithm does not achieve the MSE of 

the Wiener interpolation filter, and Its performance is highly dependent on SNR at which the 

neural network is trained. 

The CTF estimation error can be separated into two components [6]. The first component 

depends on the additive noise, and it dominates at low SNRs. As SNR increases, the CTF 

estimation error linearly reduces. The interpolation error, on the other hand, is independent of 
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SNR. At high SNRs, the CTF estimation error is dominated by the interpolation error that 

results in the MSE floor. Unfortunately, both the additive noise, and interpolation error are 

dependent on the subcarrier index. In particular, near the beginning and at the end of the 

sequence edge effects result in an increased estimation error. 

In this paper we will introduce the DFT based interpolation, that does not rely on the 

mismatch model, and does not use computationally more demanding Wiener filtering. 

We rely on the characteristics of the process of the CTF bandlimiting, and sampled signal 

characteristics in time, and frequency domain in order to significantly reduce or even 

eliminate the edge effect, and consequently the MSE floor, by using the appropriate window 

functions (WF) in time, and frequency domain. Our goal is to achieve the estimation 

performance that is the same or close to the Wiener interpolation filter, with the computational 

complexity that is same or comparable to the DFT interpolation, and without any mismatch or 

channel statistics assumptions. 

This paper is organized as follows. In Section 2, the system model is described. The CTF 

interpolation algorithm is presented in Section 3. In Section 4 we present the numerical 

results, and in Section 5 we give our conclusions. 

2. SYSTEM MODEL 

Consider an OFDM system where symbols are generated by using an N-point DFT, 

with Nc subcarriers that are used for the transmission, and Ng subcarriers in the guard 

bands at the signal bandwidth edges. Assuming perfect timing and frequency offset 

synchronization, the received signal of subcarrier n of the OFDM symbol is given by: 

 

 nnnfn xhy += , , (1) 

 

where 0  n  N − 1, xn is the symbol transmitted on the n-th subcarrier, vn is the sample 

of the additive white Gaussian noise on the n-th subcarrier. We assume that vn  are zero 

mean, complex Gaussian random variables with variance O
2
v. If we assume that the CIR 

has K components, with exponential power delay profile, then 
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where hk is the k-th CIR component, with time delay k that is normalized to the sampling 

time T0/N. OFDM symbol duration is denoted as T0. 

We assume that the first, and the last Ng subcarriers are in the guard band, and that the 

maximum time delay spread Ncir is less than or equal to the OFDM cyclic prefix with Ncp 

samples. In order to satisfy the Nyquist sampling criterion, the number of the pilot subcarriers 

Np should be at least 2Ncp, [6]. Spacing between the pilot symbols is equal to N / Np. We 

assume that the first, and the last subcarrier are known pilot symbols. 
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3. TIME-FREQUENCY WINDOWED DFT INTERPOLATION 

By taking the N-point DFT of the sequence that is given in (2), we obtain the time domain 

samples of the CIR as: 
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which can be shown from (2) to be equal to: 
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which actually represents the sampled sequence of the convolution between the CIR, and a 

function: 

 
)(

2

)(21

0

)(
2

1

111

m
N

j

mjN

n

mn
N

j

k

k
k

e

e

N
e

N −−

−−−

=

−−

−

−
=









, (5) 

that is infinite, and results in component aliasing. By taking N samples of the CTF we have 

introduced a limit to the time domain estimation resolution, and performed a circular 

expansion of the CTF in the frequency domain, and of the CIR in the time domain. The edge 

effect is the result of our attempt to estimate samples of aperiodic functions, based on their 

circular expansions. In order to reduce the edge effect, and the MSE floor we need to 

eliminate or reduce the effects of the circular expansion of the CTF, and the CIR. 

We will achieve this by taking several steps before interpolation. In the frequency domain 

we will use a flat-top WF to select the N-sample signal, and the edge subcarriers will no 

longer sharply change, but gradually go to zero. Next, we will add a sequence of N zeros in 

order to reduce aliasing in the frequency domain the will result from the processing in the time 

domain. Since our aim is not to estimate the exact values of the CIR components hk, and their 

corresponding delays k, before DFT we will multiply the sequence hf,n with the WF that 

should have such properties to reduce the time domain aliasing as much as possible. That is, 

WF should provide as low as possible the peak side-lobe level (PSL) relative to the main-lobe, 

and the asymptotic side-lobe attenuation (ASA). However, after the interpolation we will need 

to remove the effect of this WF, and therefore at the edges the value of this WF should be 

greater than zero in order to avoid significant noise amplification. This limits the ASA of WF 

to -6 dB/oct. This approach has already been proposed in the literature, but with different 

optimization parameters of WF, [5], [7], whereas in [1], anti-aliasing is performed directly, 

and only in the time domain. After we transform the signal to the time domain, we will first 

find the minimum point of the CIR aliasing due to its circular expansion, and smooth the 

transition between the circularly expanded parts of CIR in order to reduce the aliasing, and the 

estimation error in the frequency domain after the interpolation. The per-processing in the 

frequency domain is shown in Fig. 1, and the time domain processing in Fig. 2. 

Signal selection WF, wsel(n) is equal to one for n = Nws, ..., N − Nws − 1, and for 

n = 0, ..., Nws − 1, and n = N − Nws, ..., N−1 it is equal to wa(n) that has desirable PSL, and 

ASA. From Fig.1 we can see that Nws can be chosen to be greater than the guard band width in 

order to achieve better spectral properties. The rationale is that this part of the frequency 

domain sequence is the one that is most affected by the edge effect, and that therefore some 



 OFDM Low Complexity Channel Estimation Using Time-Frequency Adjustable Window Functions 111 

 

attenuation is acceptable if we can achieve lower estimation MSE. In general, we choose 

wa(n) such that for n > Ng, the subcarrier attenuation is not greater than 2dB. After 

interpolation, we will have some values for subcarriers in the guard bands, but these values 

are in general discarded. After multiplying the CTF samples with the selection WF, we add 

a sequence of N zero samples. Zero padding of the sequence of CTF samples has two 

effects. First, we reduce the aliasing in the frequency domain that results from time domain 

processing, and circular expansion in the frequency domain. Second, by zero padding we 

double the sampling rate in the time domain. We could further increase the sampling rate, but 

it does not provide any additional gains, while it increases the computational load. 

 

 

 
 

Fig. 1 Frequency domain signal selection using WF, and zero padding. 

 

 

 

 

 

 

 

 

 
  

Fig. 2 Time domain signal spectral shaping using WF, and zero padding. 

Let us denote a sequence of CTF samples on the pilot subcarriers as: 

 
pg NpNNfpf hh /1,,

ˆ
++= , (6) 

1,,0 −= pNp  , where 

 ˆ ( )f,n f,n bh = h w n , (7) 

are the filtered CTF samples using the second type of WF that is characterized by low 

spectral leakage, and minimum aliasing in time domain. Sample parameters are chosen such 

that the first and the last subcarrier are pilot subcarriers. If we introduce the following 

vectors of CTF samples: 

 
0 1[ ]T

f f, f,N= h h −h , (8) 

The vector of WF that is used for the time domain spectral shaping: 
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0 1[ ]T

b b, b,N= w w −w , (9) 

we can write: 

 
2 1ˆ [ ] N

f f b N= ; C  h h w 0 , (10) 

where  denotes the Haddamard matrix product. Let us denote a vector of CTF samples only 

on the pilot subcarriers of  ˆ
fh  as ˆ

f,ph , then we can write that: 

 pf

H

Npt p ,2,
ˆˆ hFh = , (11) 

where ˆ
t, ph  denotes the vector of CIR samples in the time domain of size 2Np  1. The 2Np-

point DFT matrix is denoted as  2N
p

F . 

Next, we search for the point in the second half of the vector ˆ
t, ph  that has minimum 

envelope, and expand the length of the pilot CIR to 2N: 

 min ,
ˆmin ( : 2 )t p p pN N N= h , (12) 

where a(i : j) denotes the range of elements of a vector that are used for optimization. Spectral 

shaping in the frequency domain is performed by: 

 , , min
ˆ (1 ( ))t p t p c N=  − h h w , (13) 

where WF wc(>>Nmin) denotes WF wc that is shifted to the right by Nmin samples. Choice of 

wc will influence interpolation of the CTF samples between the pilot CTF samples, and the 

spectral leakage in the frequency domain. Finally, at Nmin position of  t, ph we add  2N − 2Np 

zeros: 

 , min 2( ) , min[ (1: ); ; ( 1: 2 )]
pt t p N N t p pN N N−= +h h 0 h , (14) 

where M0  denotes all zero element vector of size M  1. 

Finally, we interpolate CTF by taking DFT: 

 
2f N t=h F h , (15) 

and by taking only the first N samples, and compensate for the time domain spectral shaping 

WF wb, we obtain the interpolated CTF: 

 1(1: )f f bN −= h h w . (16) 

The proposed time-frequency spectral shaping DFT interpolation has a slightly higher 

computational load in comparison to the regular DFT interpolation, because it requires 

two DFT operations at two times more points, 2Np, and 2N, and one additional vector 

multiplication with the selection WF. 

4. NUMERICAL RESULTS 

Performance of the DFT interpolation with time-frequency spectral shaping will 

depend on the choice of the parameters of WFs that are used for specific goals. In order 

to be flexible, and able to fine tune specific parameters of each WF that is used, we will 

use the adjustable WF that provide us with the possibility to choose all the parameters 

that influence resolution, and spectral leakage, [8]. The adjustable WFs that are proposed 
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in [9] are based on ultraspherical polynomials, and also allow us to adjust the WF parameters 

depending on the required spectral properties. However, it has been shown that WFs proposed 

in [8] result in lower main-lobe width, because side-lobes near the main-lobe have in some 

parts constant amplitude. The Dolph-Chebyshev WF does have the lowest main lobe width. 

However, the first and the last sample of its impulse response are much higher, which results 

in undesirable response averaging, and it is therefore rarely used in practice, [8]. 

All of the WFs that are used in this paper are obtained iteratively as [8]: 

 1( ) ( ) (1 ) ( )
α+m+

m
m m m m Hw n = β w n + β w n



− − , (17) 

where n = 0,...,Nw −1 , Nw, is the length of the WF, and the real valued parameters   0, 

0  m   1, m, and 0 = 0 control the spectral properties of the WF. WF wH(n) denotes 

the Hann WF: 
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In our simulations we will use WFs with the following parameters: 

1) wa : m = 1,  = 0.34, 1 = 1, 1 = 1, Nw = 38, 

2) wb : m = 3,  = 0, [0.26 0.221 0.742]=β , [0.818 0.072 0.92]=Δ , Nw = N, 

3) wc : m = 1,  = 0.34, 1 = 1, 1 = 1, Nw = 9, 

Chosen WFs have the following spectral properties. WF that is used to select signal in 

the frequency domain wa, has PSL of -20dB, ASA of -10dB/oct, and variable window 

length of Nw / 2 =19. WF that is used for spectral shaping in the time domain wb, has PSL 

of -20dB, and ASA of -6dB/oct, while its window length will vary depending on the 

specific length of the sequence in the frequency domain. The last WF wc, that is used for 

spectral shaping in the frequency domain has also PSL of -20dB, ASA of -10dB/oct, and 

the window length of Nw = 9. 

The parameters of wa are chosen so that in our simulations it does not span more than 

three pilot subcarriers on each side of the signal bandwidth, and that the maximum 

attenuation in this range does not exceed more than 2dB. These subcarriers are only a 

couple of percents of the total number of subcarriers, and by shaping this part of the 

useful spectrum helps us reduce the edge MSE on one hand, with the acceptable loss that 

can be compensated by using the forward error correction coding over all subcarriers, 

including the majority that will have much lower CTF estimation error. Parameters of the 

second WF, wb, are chosen such to have the spectral leakage as low as possible. We gave 

priority to minimizing the PSL because we needed to minimize the aliasing between the 

neighboring CIR components, especially the first, and the last one. By padding the 

sequence in the frequency domain with N zeros, we are more flexible with the choice of 

the WF wc. Its parameters are chosen as a compromise between the minimum main-lobe 

width, and the ASA. These two parameters are inversely proportional, and as ASA 

decreases, resulting in lower spectral leakage, the main-lobe width increases, which 

results in lower frequency resolution. The main lobe of the chosen WF is only slightly 

greater then the main-lobe width of the rectangular WF, but has lower ASA by -4dB/oct 

that is enough considering the number of padded zeros in the frequency domain. We note 

that in a conventional DFT interpolation, the time domain processing is performed by 

using rectangular WF wc, which results in large spectral leakage at bandwidth edges. 
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In our simulations we have set that the cyclic prefix (CP) of theOFDM symbol is 

Ncp = 16. In order to satisfy the Nyquist sampling criterion, we set Np = 32. First, we will 

compare the performance of the conventional DFT interpolation, and the proposed time-

frequency DFT interpolation for N = 320. In case of conventional DFT we set that 

Nmin = Np / 2, and that no WF are used. Next, for comparison we use the case of the 

conventional DFT when we use the same WF to select the signal in the frequency domain 

as in the case of our proposed algorithm. This algorithm is denoted as conWDFT. 

CIR is modeled with exponential power delay profile. Number of CIR components has the 

Poisson distribution, and the time delay between the CIR components is exponentially 

distributed, [10], [11]. Maximum power attenuation is set to -25dB. CIR is normalized so that 

the average power of the CTF sample is equal to one. SNR is defined as the ratio of the 

average CTF sample power, and additive noise variance. 

In Fig. 3. we compare three algorithms for CTF interpolation when the maximum 

time delay of the CIR is equal to the CP time interval. Simple frequency domain shaping 

of the bandwidth edges provides addition 5dB MSE reduction with respect to the 

conventional DFT. The proposed spectral shaping using WFs in both time, and frequency 

domain provides more than 12 dB gain over the conventional DFT interpolation. 

 
Fig. 3 MSE comparison for Tm = Tcp. 

Case when the channel time delay spread is equal to CP is a worst case scenario. Very 

often it is much shorter than CP. In Fig. 4. we compare the same algorithms when the channel 

time delay spread is 80%, 60%, and 40% of CP, Tm = 0.8 Tcp, Tm = 0.6 Tcp, and Tm = 0.4 Tcp. 

In this case, the DFT interpolation with frequency domain shaping has 7dB gain over 

the conventional DFT interpolation, whose performance has not changed.  

Finally,  in Fig. 5. we compare MSE of the various algorithms as a function of the number 

of samples in the frequency domain for SNR = −80 dB, and Tm = 0.6Tcp. As this number 

decreases, and with all other parameters fixed, the result is that the number of subcarriers 

between the pilot subcarriers also reduces. This has an effect only on the conventional 

DFT with the frequency domain WF selection, MSE significantly reduces. Performance 
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of the conventional DFT interpolation does not change with the time delay spread of CIR, 

or the spacing between the pilot subcarriers.  

 
Fig. 4 MSE comparison for Tm = 0.8Tcp, (2) Tm = 0.6Tcp, and (3) Tm = 0.4Tcp. 

 
Fig. 5 MSE as a function of N, SNR = -80dB. 

The algorithm that is proposed in this paper does not eliminate the edge effect. However, 

as a result of zero padding, and by using the first flat-top WF to select the sequence in the 

frequency domain, we significantly reduce the interpolation error, and the number of the 

subcarriers at the edges that are affected, in comparison to the conventional DFT interpolation 

or cWDFT. Overall, the interpolation error for TFWDFT in the middle of the bandwidth 

is significantly reduced to the point that at the high SNRs it is several orders of magnitude 

lower and almost negligible.  
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Computational complexity of the proposed algorithm TFWDFT, is two times higher 

than the complexity of cWDFT. However, it does achieve the MSE of the Wiener 

interpolation filter, and has a much lower MSE floor. However, its complexity is much 

lower than that of the Wiener interpolation filter which is a square function of the number 

of the subcarriers. 

7. CONCLUSION  

In this paper, we have introduced a novel low complexity channel estimation algorithm 

that is using DFT interpolation and the signal spectral shaping in time, and frequency domains 

in order to reduce the error floor that is characteristic for CTF estimation based on scattered 

pilot grid. We avoid using any worst case assumptions or Wiener filtering that requires the 

matrix inversion, and knowledge of the channel statistics. The spectral shaping is achieved 

using adaptive WFs that enable us to fine tune their parameters in order to meet a specific 

criterion. Depending on the length of CIR, the novel interpolation algorithm can achieve 

significant gains relative to other low complexity proposals. 
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