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Abstract. The enormous volumes of geospatial data and the need to process and 

distribute them cry out for a unified framework that enables their efficient storage, 

analysis, and a high degree of interoperability. Discrete global grid systems provide such 

a framework by hierarchically tessellating cells to seamlessly partition and address the 

globe. Since they are usually based on a regular polyhedron, they partition the entire 

world into as many discrete data sets as the given polyhedron has sides. In this paper, we 

try to reduce the number of partitions to two, which is a minimum if we want to obtain 

spatially convex partitions without interruptions. Two approaches are presented, based on 

an adjusted spherical cube and an equidistant cylindrical projection. The distortions 

resulting from the application of these projections are compared and guidelines are 

presented to improve the quality of their implementation by reducing the distortion of the 

continental plates and making a better mapping to the WGS84 ellipsoid.  
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1. INTRODUCTION 

The amount of geospatial data is extremely large, growing by several terabytes every day. 

The sources of this data are diverse, and the largest amount comes in the form of satellite and 

aerial imagery. The collected data is available in various projections and formats. In order for 

them to be shared, analyzed, and commonly used, they must be consistent and organized, and 
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there must be a unique way to reference them. This requires an appropriate global spatial 

reference frame. 

Discrete Global Grid Systems (DGGS) are a class of spatial reference systems that use a 

hierarchical tessellation of cells to partition and address the entire planet without gaps or 

overlaps. The formal development of these systems begins in the middle of the 20th century 

[1], but they experienced a real expansion only at the transition from the 20 th to the 21st 

century [2]-[4]. The importance of DGGS is also reflected in the fact that the Open 

Geospatial Consortium (OGC) established the DGGS Standard and Domain Working 

Groups to promote geospatial data interoperability and published the Discrete Global Grid 

Systems Abstract Specification [5] in 2017. The standardization process continued and 

resulted in a formal specification defined by the ISO 19170-1:2021 standard [6]. 

The most important subclass of DGGSs are systems based on regular, multi-resolution 

partitions of polyhedra, called Geodesic DGGSs (GDGGS) [4]. The five Platonic solids 

(tetrahedron, hexahedron, octahedron, icosahedron, and dodecahedron) circumscribed by 

the sphere are most commonly used as regular base polyhedra. As the number of faces 

increases, the polyhedron better approximates the spherical surface, reducing the effects of 

the distortion caused by the projection of the planet onto the polyhedron. However, each 

face represents a separate partition with its own local coordinate system and separate 

hierarchical data set, and is adjacent to neighboring independent partitions, which complicates 

the overall processing of the data. Apart from the problem of merging segments that lie on the 

boundary of multiple partitions, a larger number of partitions in systems for streaming 

geospatial data, such as planetary-scale terrain data visualization systems [7], means larger 

memory requirements and less efficient resource consumption. Therefore, the goal is to 

reduce the number of partitions to a minimum while keeping the distortion under control. 

This paper compares two approaches for designing DGGSs with two partitions based on 

orthogonal grids. The paper is divided into 6 sections. After a brief introduction to DGGSs in 

Section 1, Section 2 presents the basic design decisions that fully specify DGGS. Section 3 

proposes two partitioning schemes based on an adjusted spherical cube and a cylindrical 

equidistant projection. Section 4 compares these approaches in terms of the distortion, while 

Section 5 recommends further improvements by selecting an appropriate ellipsoid to sphere 

mapping and base cube orientation. The conclusion and directions for further development are 

given in Section 6. 

2. DGGS IMPLEMENTATION 

There are many different approaches to the design of GDGGS. However, five basic 

elements [4] completely determine GDDGS, namely: 

1. Regular base polyhedron, 

2. Orientation of the base polyhedron with respect to the planet, 

3. Hierarchical spatial partitioning of the sides of the polyhedron into cells, 

4. Transform the planar faces of the polyhedron into the corresponding spherical or 

ellipsoidal surface of the planet and vice versa, and 

5. Methods for indexing and addressing cells.  

Usually, one of the five Platonic solids [8] is chosen as the base polyhedron because 

they are regular and consist of sides of the same shape (triangles, squares, or pentagons), the 

same area, and the same number of neighbors. However, in some cases semiregular polyhedra 
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are also used, in particular the truncated icosahedron, one of the 14 Archimedean solids. 

The truncated icosahedron is suitable for a hexagonal cell structure, but the cells are not 

uniform. Each of the 12 vertices of the icosahedron is truncated to form a pentagon, resulting 

in 20 hexagons corresponding to the original triangular faces [8]. The 12 pentagonal cells exist 

at all levels of tessellation. A considerable number of the proposed GDGGSs are based on the 

icosahedron and the truncated icosahedron using triangular or hexagonal cells [2]. Despite 

their good properties in approximating a spheroidal surface, the lack of orthogonal axes and 

cell congruence, as well as the complicated implementation seem to prevent their wide 

acceptance. On the other hand, hexahedral GDGGSs lead to larger distortions due to the 

smaller number of primary partitions. However, their ease of implementation and superior 

data organization and retrieval properties make them more attractive for use in various 

applications. 

The first hexahedral projection can be attributed to C. G. Reichard, who in 1803 produced 

a six-sheet atlas of the entire world [5] using a gnomonic projection. The interest in the cube 

as a base polyhedron returned in the early 1970s, first through the class of conservative 

finite difference approximations of the primitive equations for quasi-uniform spherical grids 

derived from regular polyhedra in 1972 [9], and then through the feasibility study of a 

quadrilateralized spherical cube Earth database system [10] for the US Navy Department in 

1975. The proposed quadrilateralized spherical cube projection was used extensively with 

some modifications more than a decade later for the Cosmic Background Explorer (COBE) 

project at NASA. The extended studies of a quadrilateralized spherical cube Earth database 

led to an exact equal-area sphere-to-cube mapping in 1976 [11]. However, the proposed 

formulation was computationally difficult to solve at that time [12]. 

In the last two decades, hexahedral projections have come back into focus as a simple 

method to extend existing 2D spatial databases and information browsing systems to the 

3D spherical data model [3] and to accurately render a planetary scale terrain [13]. Some 

modern open-source libraries, such as S2 [14], use spherical cubes to enable seamless 

geographic databases with low distortion. Numerous hexahedral projections have been 

proposed in the last decades, highlighting the relevance and popularity of this approach, 

especially in geodesy, but also in computer graphics [15]-[16]. 

Aligning the base polyhedron is the next step in designing the GDGGS. Usually this 

is done so that the vertices or the centers of the faces coincide with the poles or achieve 

symmetry with respect to the equator and the prime meridian. Considering that it is often 

important to represent the continental plates without interruptions and with as little 

distortion as possible, the alignment can support some of the desired properties, such as 

unfolding the entire world into the Dymaxion map [17] without landmass interruptions, 

completely covering the area of interest with only one face of the polyhedron [8], or 

globally minimizing the landmass distortion [18]. Since DGGS should provide an efficient 

organization of data for the entire world without favoring certain areas or having to consider it 

as an unfolded 2D map, an approach that minimizes the distortion on a global scale is 

certainly the most acceptable approach for aligning the base polyhedron. 

The third step in the definition of the GDGGS is the spatial partitioning of the sides of 

the polyhedron into cells. The partitioning must be such that it is possible to form a multi-

resolution grid. In general, four cell topologies [4] are used, namely: square, triangle, 

diamond, and hexagon. There are two basic properties for the relationship of cells in two 

adjacent hierarchy levels, namely: congruence and alignment. Cells are congruent if the 

area of the cell on a coarser level represents the union of the areas of the cells on a finer 
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level, and aligned if the centers of the cells on different levels coincide. The ratio of cell 

areas on two adjacent levels is called the aperture. The aperture depends on the shape of 

the cell, but also on whether we want to maintain the property of congruence or alignment, 

and how fine we want the transition between different levels to be. The smaller the aperture, 

the smaller the difference in resolution between two adjacent levels, and the larger the 

number of levels in the data set. If the base polyhedron is a cube and the sides are square, 

the most natural subdivision is into square cells, and the most common aperture is 4 or 9, 

although other values are used [19]. Aperture 4 allows the formation of congruent and 

unaligned grids, while aperture 9 forms congruent and aligned grids, but with a larger 

difference in the resolution of adjacent levels. In the present work, aperture 4 is used because 

it represents a good balance between a smooth transition and the number of levels with 

different resolutions, but also because of the possibility of a direct mapping to the technology 

used for visualization. 

The fourth step in defining GDGGS is to decide how to map the surface of the polyhedron 

onto a sphere or an ellipsoid. Two approaches are possible [2]: direct spherical subdivision 

and projection. The direct spherical subdivision creates partitions directly on the spherical 

surface, while the projection uses the inverse transformation of mapping the spheroidal 

surface onto flat faces of the base polyhedron. Since it is impossible to project a curved 

surface onto a plane without distortion, we can choose whether to preserve the surface (equal-

area projection) or the shape (conformal projection) when choosing the projection. The better 

one feature is preserved, the more the other is violated. For this reason, projections are used 

that are neither equal-area nor conformal, but keep both types of distortion under control. 

Detailed reviews of the properties of projections used to map the sphere onto a cube and vice 

versa, especially from the point of view of their application in computer graphics and 

visualization of planetary scale terrain, can be found in [15] and [16]. In the next section we 

present some of the projections that can be used for bisecting the planet. 

The final step in defining GDGGS is to choose a cell indexing method. Dealing with an 

extremely large number of cells requires an efficient addressing scheme, usually referred to as 

indexing. Many indexing methods have been proposed for DGGSs, but all of them can be 

classified into three types [20]: hierarchy-based, space-filling curves, and axis-based indexing. 

Hierarchy-based indexing follows the refinement process, which is usually given by a space-

partitioning data structure in the background. This index is usually represented by a string 

whose length corresponds to the resolution and where each character or number represents the 

spatial position of the cell within its parent structure. The space-filling curve indexing is based 

on recursively defined 1D curves that systematically traverse a space, which in the case of 2D 

space is a unit square. This indexing scheme is popular because it serializes a multidimensional 

address into a very compact single number and reduces the memory access time by preserving 

the relationship between near neighbors. The two most popular space-filling cures used in the 

cube-based GDGGS indexing are Hilbert and Morton curves. The axis-based indexing is a 

natural way of cell addressing using an m-dimensional position vector. By unfolding the base 

cube into a plane, a unique 2D coordinate system can be used for all of its faces, but most 

implementations use separate coordinate systems for each face. Since the axis-based indexing 

is suitable for accessing multidimensional data, it is a good choice for implementing a data 

cube based on DGGS [21] as a Digital Earth platform [22]. Digital Earth is a concept of an 

interactive digital replica of the entire planet that can facilitate a shared understanding of the 

multiple relationships between the physical and natural environments and society [23]. 
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3. TWO-PARTITION WORLD DIVISION 

People have always had to georeference to determine their position in the space that 

surrounds them. Traditionally, parts of the Earth's surface were converted into planar 

maps because they were easier to produce and store and proved to be very effective until 

the need arose to apply them to the entire planet. 

Since the Earth has a spherical shape, it is impossible to unfold its surface in a plane 

without causing a considerable distortion of area and shape. Projecting the entire surface 

onto only one plane either results in extremely large distortions that grow into singularities 

(most common at the poles, since these are less important for cartography), or the map is 

interrupted (discontinuous). Discontinuous maps reduce the distortion, but the partitions are 

separated from each other and in a mutual position that does not correspond to their 

relationship on the surface of the planet. Apart from the problem of representing areas that 

lie on partition boundaries (partition merging problem), such maps have an interrupted 

visual context of integrity. It is precisely for this reason that the equidistant cylindrical 

projection (invented by Marinus of Tyre around 100 AD), shown in Fig. 1, is still the most 

commonly used for organizing global data, despite its extremely large distortion, because 

the relationship between the position on the map and the corresponding geographic location 

on the Earth is particularly simple. 

 

Fig. 1 Equidistant cylindrical projection 

Of all the basic polyhedra used in GDGGSs, only the hexahedron, i.e., the cube, allows 

the merging of partitions into continuous 2D maps. This is a very important feature given 

the way raster data is stored in modern computer systems. There have been attempts to 

dynamically create a continuous map composed of the faces of a cube [24] centered on the 

focal point, but the drawback is the discontinuity in the vertices of the cube (Fig. 2). 

Another problem is the need to rotate certain sections of the map with the shift of the focal 

point, which makes it difficult to update the map and disturbs the spatial coherence. 
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Fig. 2 An example of a continuous 2D map based on a spherical cube [24]. 

From the point of view of spatial consistency and the formation of a minimum number of 

partitions, it is optimal to connect three sides of the cube into one partition (Fig. 3). The 

partitions formed in this way are symmetrical and orthogonal to each other, and their shape is 

reminiscent of the Yin-Yang symbol, which is why the corresponding grid got its name [25]. 

An organization with two partitions (Yin-Yang) can also be obtained by two orthogonal 

cylindrical projections (Fig. 4). In this section, both approaches are presented. 

Regardless of the projection method used, the first partition (P0) generally extends 

horizontally, symmetrically about the equator and the prime meridian (Figs. 3a and 4a), 

with polar coordinates identical to global geographic coordinates (,). The second 

partition (P1) extends along the anti-meridian (180th meridian), is symmetric about it, and 

contains both poles (Figs. 3b and 4b). The transformation of the local polar coordinates of 

one partition into another is achieved by equations (1) and (2). Various forms of these 

transformations can be found in [25]. 

 ( )1 0 0( ) ( )P P Parcsin cos sin  = −  , (1) 

 ( )1 0 0 0 1( ) ( ) ( ) ( )P P P P Psgn arccos cos sin / cos    = −  −  . (2) 

A good property of these transformations is that they are the inverse of themselves. 

This means that two successive applications lead to an identity transformation. So they 

can be used to transform from any partition to another. The data are defined in the space 

of the partitions by plane (x,y) coordinates. The function that transforms polar coordinates 

(,) into plane coordinates (x,y) is called the forward transformation (a projection of a 

sphere onto a plane) and the function that transforms plane coordinates into polar coordinates 

(a projection of a plane onto a sphere) is called the inverse transformation. The properties 

of projections are precisely defined by these functions. 

Partitioning Based on Spherical Cubes 

There are many projections that can be used to project a spherical surface onto a cube, 

popularly called spherical cubes. In [15], only some of the most commonly used are 

shown. These projections can be equal-area or conformal, and most have neither of these 

properties. However, the projections that are neither equal-area nor conformal are 

commonly used because they balance the effects of two types of distortions with some 

additional practical properties. In this work, the adjusted spherical cube projection [26]-

[27] was used, which is very simple to implement and yet very effective. The forward 
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transformation is defined by equations (3) and (4), while equations (5) and (6) define the 

inverse transformation [15]. 

 

  
a) 

 
c) 

 
b) 

Fig. 3 Partitioning based on an adjusted spherical cube: a) partition P0, b) partition P1, 

and c) partitions applied to the sphere, with partition P1 shown in a darker shade. 

 

  

a) 

 
c) 

 
b) 

Fig. 4 Partitioning based on cylindrical projection: a) partition P0, b) partition P1, and   

c) partitions applied to the sphere, with partition P1 shown in a darker shade. 
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In contrast to the classical spherical cubes, where the plane coordinates (x,y) lie in the 

interval [-1,1], in the case of the two-partition projection x  [-3,3], so that equation (3) is 

changed to (7). 
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Another problem is to determine to which partition a point with given polar coordinates 

(,) belongs. If ||<3/4 and ||<3/4 holds, then the point certainly belongs to partition P1. 

However, if this condition is not satisfied, it does not mean that it belongs to partition P0, 

because the angles of the polar faces of the cube are below the 45th parallel. The problem can 

be solved by assuming that the point belongs to the partition P0 and checking whether the y-

coordinate obtained by the forward transformation has an absolute value smaller than 1. If 

this is the case, the assumption that the point belongs to the partition P0 is also correct. 

Partitioning Based on Cylindrical Projection 

Since the partitions enclose the sphere cylindrically, the use of two orthogonal cylindrical 

projections can reduce the distortion by avoiding the bends at the edges of the cube. 

However, this approach also has a drawback, since it leads to a partial overlap of the 

square cells at the edge of the partition [25]. When rectangular partitions are used, 6.4% 

of their areas overlap. The challenge in using this projection is to efficiently remove the 

overlapping areas and precisely cut and fit the partitions. In Fig. 4, the overlapping areas 

have been removed, resulting in the oval shape of the partitions. 

Using the equidistant cylindrical projection simplifies the forward and inverse 

transformations as much as possible. For the partition P0, the plane coordinates (x,y) are 

obtained by dividing the polar coordinates (,) by the constant PI /4 so that the range of 

coordinates is identical to that of the projection based on the spherical cube. In the case of 

partition P1, the global polar coordinates must first be transformed to the polar coordinates of 

the respective partition using equations (1) and (2) before dividing by the constant /4. The 

inverse transformation for the partition P0 multiplies the plane coordinates by the constant 

/4, while for P1 it additionally transforms the polar coordinates of the partition into global 

polar coordinates using equations (1) and (2). 

Since the overlapping regions are in the leftmost and rightmost sixths of the partition, the 

point (x,y) belongs exclusively to the current partition if x  [-2,2]. If the previous condition is 

not satisfied, the point does not belong to the overlapping region if |P1| < /4. P1 is obtained 

by applying the inverse transformation and converting the polar coordinates to the space of 

another partition by applying equations (1) and (2). 
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4. COMPARISON OF THE PROPOSED PROJECTIONS BY DISTORTION 

The two most commonly used metrics for representing shape deformation in projection 

are angular and areal distortions. Ideally, two lines should intersect at the same angle on 

both the surface of the globe and the projected map. If the projection is conformal, the angles 

and therefore the shape of the features are preserved. For the non-conformal projections, the 

angular distortion represents the maximum deviation from the correct angle at a given 

location. The projection can also change the scale of features. The ratio between the projected 

area and the original area is called areal distortion. Equal-area projections preserve the area. 

Distortion parameters are often represented with Tissot’s indicatrices [28]. An 

infinitesimal circle on the Earth projects as an infinitesimal ellipse on a map projection, 

with major and minor axes directly related to areal and angular distortions. This ellipse of 

distortion is called an indicatrix. Table 1 compares the two proposed projections using 

Tissot's formulas. In addition to the areal and angular distortion, the aspect distortion was 

added as the ratio of the major and minor semiaxis of Tissot’s indicatrices. 

Tab. 1 Comparison of distortion parameters for two proposed projections. 

Projection Distortion Min. Max. Ave. 

Adjusted 

spherical 

cube 

Areal  1.621 2.292 1.925 

Angular [] 0.000 31.07 11.57 

Aspect 1.000 1.732 1.234 

Equidistant 

cylindrical 

Areal  1.621 2.292 1.805 

Angular [] 0.000 19.75 5.864 

Aspect 1.000 1.414 1.113 

Table 1 shows that both projections have the same ranges of areal distortion, but that 

the mean value is significantly lower for the cylindrical equidistant projection. This is due 

to the fact that the areal distortion is greatest at the edges, where the projection plane 

ends. For an equidistant cylindrical projection it is at ±/4, while for a spherical cube it 

occurs at all edges of the cube. Since a partition of a spherical cube consists of three 

connected sides of a cube, a much larger area is affected by the distortion. Fig. 5 shows 

graphically the effects of distortion on the partition P0. 

When considering angular distortion, the equidistant cylindrical projection is 

significantly better for both maximum and mean values. This indicates that the shapes are 

better preserved with this projection. The angular distortion is greatest at the vertices of 

the spherical cube, where it reaches 31. Only the angular distortion is given in degrees. 

There are no units of measurement for the other types of distortions. The cylindrical 

equidistance projection is also better when considering the aspect distortion. The largest 

aspect distortion in the adjusted spherical cube is also at the vertices. 
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Fig. 5 Graphical comparison of the distortions of the two proposed projections. 

A statistical distribution of the distortion values can be seen in the histograms in Fig. 

6. The distributions were estimated based on over 50 million samples per partition. It can 

be seen that the cylindrical equidistant projection not only has lower values for all three 

types of distortion, but also a better distribution of these values. 

From a visualization point of view, the problem with the two-partition cylindrical 

equidistant projection is the overlap of the partitions. Namely, the algorithms for representing 

the terrain on a planetary scale must very precisely truncate the vertices of one partition that 

merge into another, requiring additional techniques to close pinholes that occur at the 

boundary of the junction. Second, precise merging of partitions requires that there be 

overlapping cells, which requires capturing data that should not be displayed. And third, 

addressing partitions must be done at the level of the entire bounding rectangle, including 

overlapping areas, even if the cells within them do not contain data. All this complicates the 

application compared to spherical cubes. 

5. FURTHER IMPROVEMENTS 

In all the projections defined before, the sphere was mapped onto the plane and vice 

versa. However, the planet Earth is not an ideal sphere. Currently, the most commonly 

used model is the World Geodetic System 1984 (WGS84) reference ellipsoid [29]. All 

global navigation and most global data sets are based on this model. Therefore, it is 

necessary to include the mapping of the ellipsoid to the sphere in the forward and inverse 

transformations of the previously defined projections (Fig. 7) to allow access to this data. 

The transformation from ellipsoid to sphere is not a unique process and depends on 

the property we want to preserve. The most common method is to convert the geodetic 

latitude to one of the "auxiliary" latitudes. Auxiliary latitudes were systematically described 

and all formulas derived by O. Adams [30], but they gained greater popularity much later 

through the working manual of Snyder [28]. In [18], it was shown that in the adjusted 
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spherical cube projection the smallest angular distortion is obtained by applying the 

geocentric latitude and the smallest areal distortion is obtained by applying the approximated 

authalic latitude. The properties are 0.8% to 1.3% better than when the geodesic latitude is 

used, i.e., when the ellipsoid is not converted into a sphere. Considering the minimal deviation 

of the WGS84 reference ellipsoid from the ideal sphere, the advantages of the carefully 

selected ellipsoid to sphere transformation in mapping are not negligible. 
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Fig. 6 The distribution of distortion values for the two proposed projections. 

Another improvement is to reduce the distortion of the landmass. This can be done by 

orienting the base cube or the orthogonal cylinders, depending on which projection is 

considered. The basic orientation shown in Section 3 is defined to maximally simplify the 

transformations and to make the partitions symmetric with respect to the equator, the 

prime meridian, and the antimeridian. By introducing rotations, the mapping of the 

ellipsoid to the plane and vice versa becomes more complex, so that we can now speak of 

transformation pipelines instead of simple forward and inverse transformations (Fig. 7). 

 
Fig. 7 Transformation pipelines for converting WGS84 coordinates into a partition space 

(forward transformation) and back to WGS84 (inverse transformation). 



26 A. DIMITRIJEVIĆ 

The rotation angles depend on the projection chosen, but also on the type of the distortion 

we want to minimize. For the case of an adjusted spherical cube, with the constraint that the 

angles are integer and we want to minimize the angular distortion, the optimal rotation angles 

of the base cube are:  = 17 (in the longitudinal direction),  = -10 (in the latitudinal 

direction), and  = 32 (about the axis perpendicular to the axes of the two previous rotations), 

as shown in [18]. The choice to optimize the angular distortion also results in a more faithful 

representation of the shape of the continents. Moreover, the arrangement of the continents 

after the rotations is such that their overlap with the edges of the cube is reduced. Fig. 8 shows 

the appearance of the partitions after the orientation of the base cube according to the 

previously set parameters. 

 

  
a) 

 
c) 

 
b) 

Fig. 8 Partitioning based on an adjusted spherical cube, optimally rotated to minimize 

angular distortion of the continental plates: a) partition P0, b) partition P1, and c) 

partitions applied to the sphere, with partition P1 shown in a darker shade. 

6. CONCLUSION  

The problem of organizing, storing, and efficiently sharing enormous amounts of 

geospatial data has not yet been satisfactorily solved. DGGSs provide a framework for unified 

access to global data, but typically divide the data into several separate partitions according to 

the number of sides of the polyhedron on which they are based. In this paper, the two methods 

to divide the entire world into only two disjoint, convex and orthogonal partitions are 

proposed. This is the minimum number if we want to avoid singularities or interrupted 

partitions. 

The effects of distortion were compared based on their maximum and mean values, 

spatial distribution, and statistical distribution of values. It is found that the partitioning 

based on two orthogonal cylindrical equidistant projections has lower distortions than the 

adjusted spherical cube. However, the problem with this approach is the presence of 

overlapping areas that can complicate the combination and visualization of the data. 
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Distortions can be further reduced by rotating the projection planes, that is, rotating 

the sides of the cube or cylinder so that the regions of interest are as far as possible from 

the edges of the projection planes. The most common goal is to reduce the distortion of 

land masses, since they have much greater cartographic significance than large areas of 

water. Distortion can also be affected by the choice of an ellipsoid-to-sphere mapping. 

The results of the analysis of the proposed projections with two partitions show that 

both approaches are very applicable in the organization of global data. From the point of 

view of less distortion, the approach based on orthogonal cylindrical projections gives 

much better results, but the approach via spherical cubes forms completely disjoint and 

rectangular partitions, which makes the application much easier. 

Given the large number of projections based on spherical cubes, further research will 

be directed toward finding a projection that has better distortion properties while 

retaining all the advantages of rectangular partitions. The second research direction will 

focus on solving problems related to three-dimensional visualization of data addressed by 

the proposed two-partition DGGSs, and adapting existing algorithms for planetary-scale 

terrain rendering to take advantage of such organization of data. 
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