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Abstract. The method of digital stochastic measurement is based on stochastic analog-

to-digital conversion, with a low-resolution A/D converters and accumulation. This 

method has been mainly tested and used for the measurement of stationary signals. This 

paper presents, analyses and discusses a simulation model development for an example 

of electrooculography (EOG) signal measurement in the time domain. Tests were 

carried out without adding a noise, and with adding a noise with various level of 

signal-to-noise ratio. For these values of signal-to-noise ratio, the mean and maximal 

relative errors are calculated and the significant influence of Gibbs phenomenon is 

noticed. In order to eliminate Gibbs phenomenon and decrease measurement error, a 

modified stochastic digital measurement method with overlapping measurement 

intervals has been developed and applied. On the basis of obtained results, the possibility of 

design and realization of an instrument with sufficient accuracy benefiting from the 

hardware simplicity of the method has been formulated. Also, the idea for the future 

research for developing a simulation model with a lower sampling frequency and 

implementing the proposed method is outlined.  
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1. INTRODUCTION 

Nowadays, digital hardware components are used as a basis in realization of the modern 

measuring instruments, where measured time-continuous signals are previously conditioned. 

Then, conditioned signals are sampled, and converted into the digital variables. Throughout 

the process of an A/D conversion (ADC), the accuracy and speed are contradictory requests. 

Within the theory of measurements, and in the practice likewise, precise measurements of 

low-level, distorted and noisy signals are real challenge. 

A possibility for reliable operation of instruments with inherent random error has been 

researched in [1]. The simple hardware and extremely quick operation of these instruments 

represent the fundamental characteristics of that approach. Adding a random uniform dither to 

ADC’s input will decouple error from the input measuring signal, as shown in [2, 3]. This 

added dither suppresses the measurement error because of both A/D conversion and the 

additional external noise in the input signal. 

For measuring average DC inputs, AC inputs and/or distorted AC inputs some 

specific methods are developed, based on this approach. They are known as digital 

stochastic measurement methods. Many prototypes of instruments, with extraordinarily 

low measurement uncertainty, are already realized [4-7]. 

In [6] an instrument, which has seven different input channels, is presented in detail. It 

enables performing the harmonic analyses, in each input channel, for the DC component and 

up to forty-nine harmonics (both sine and cosine components). Its hardware structure is 

designed for harmonic measurements, and the basis of its operation consists of stochastic A/D 

conversion and accumulation. The method, and also the expected measurement uncertainty, 

for 49 harmonics, with sampling frequency of 250 kHz per channel, are confirmed by 

simulation and experiments [6]. A digital stochastic measurement (DSM) method for various 

types of stationary signal has been explored and presented in [7]. Based on obtained results, it 

can be concluded that this method can be applied for measuring of any stationary signal. In the 

case of real power grid signals, when the fundamental frequency is drifted from its nominal 

value, the corrections of this method are necessary. The concrete improvement of this method 

is described in [8]. 

New approach of digital stochastic measurement method is presented and confirmed by 

simulations in [9]. The basis of the simulation approach is the technique of Concurrent 

Programming. In order to test the proposed methodology, for periodic input signals converted 

by the stochastic ADC, the discrete Fourier transform (DFT) has been applied. Achieved 

results prove that the Concurrent Programming technique increases only the simulation speed, 

and has no other effect on the measurement performance. 

A concurrent computing technique for the DSM simulation acceleration is presented in 

[10]. The DSM presents a methodology that is used for an orthogonal transformation 

calculus/decomposition. In order to test the proposed methodology, power grid signals were 

harmonically analyzed through a DFT. A several levels of computing concurrency were used 

for harmonic decomposition. The main criterion was model accuracy, while the overall 

calculus speed was the parameter used for the simulation computing technique selection. 

In the case of classical digital measurement of non-stationary signals, the measurement 

system may be exposed to the high-level ambient noise (where the signal-to-noise ratio may 

be extraordinarily low). Therefore, the techniques of conditioning will not be satisfactory. The 

results of alternative solutions research for situations of the high-level ambient noise presence 
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are presented in [11, 12]. In these papers the implementation of the DSM approach in non-

stationary signal harmonics' measurement, with different measurement time is also described. 

In [11] the EEG signal is selected as an example of a real non-stationary signal, and 

measurement uncertainty is calculated by the developed theory. In papers [11, 12] the 

DSM measurement of harmonics of the EEG signal is tested by simulations and experiments. 

Theory calculations are compared with the results of simulations and experiments that are 

carried out. By increasing the sampling rate of the used A/D converter, the presented method 

provides a decrease of the measurement uncertainty, even at low SNR values. 

The implementation of the DSM method for the EEG signal measurement in time domain 

is presented in [13,14]. The measurement error increased, as a consequence of the Gibbs 

phenomenon. It is shown that the average maximal error relative to the range of input signal is 

decreased when the measurement interval is extended from 20 ms to 2 s. 

Biomedical signals are very weak signals and high-level ambient noise may exert 

significant influence on their amplitude, which leads to incorrect measurement results. In this 

paper the application of the modified method for measuring such a noisy biomedical signal, 

where an EOG signal is used as the example, is described in detail. 

The retina resting potential measurement technique is named electrooculography (EOG). 

The resulting signal is known as electrooculogram. In the function of time, EOG signal 

presents the corresponding record of the distinction in electrical charge between the front and 

back of the eye for every kind of eyeballs movements, such as up, down, left, right, and eye 

blinking [14]. This record is obtained by electrodes that are placed on the skin near the eyes.  

Obtained recorded signals may be used for external devices control, like electric 

wheelchairs, virtual keyboards, artificial arms and robots. Also, the recordings of eye 

movements are necessary in ophthalmology for a detailed description and analysis of the 

eye motoric functioning. Numerous changes in the eye may be detected by analysing 

EOG signals. Therefore, the condition of the eye may be determined. 

2. REVIEW OF THE DIGITAL STOCHASTIC MEASUREMENT METHOD 

The DSM method is based on measurement over an interval. Measurements are 

carried out with a low- resolution ADCs and accumulators (ACC). In order to eliminate 

the influence of the quantization error, which is significant here, the white noise h1 

(dither) with a uniform amplitude distribution is added to the linearly amplified input 

signal y1(t), in the range of quant of the applied ADC. The dither has been assumed to be 

the sum of all noise values that were not discarded before the input of the DSM block. 

The method of digital stochastic measurement is based on the stochastic analog-to-

digital conversion, with a low-resolution A/D converters and accumulation. 

If needed to measure the integral (the mean value,  ) of a product of two signals, Ψ, 

[4], then the measurement block has two uncorrelated dithers h1 and h2 added to input 

signals y(t) and ya(t), respectively (Fig. 1a). The values Ψe and Ψa present the sampled 

values of the dithered input signal y(t) and dithered input signal ya(t) within time interval 

(T), respectively. Dither signals h1 and h2 are random signals with a uniform amplitude 

distribution. Accumulator is realized as an up-down counter, and the ratio of the accumulator 

value and the number of samples gives the mean value of the input signal. In [7] it was 

shown that the DSM method can be used for measuring the coefficient of the orthonormal 

expansion. In that case, the second channel has been replaced with the memory block (Fig. 
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1b), which stores the digitized dithered basis (cosine or sine) function yad(t) = ya(t) + h2. 

Thus, the equation ya = R  cos k0t is valid for measuring the kth cosine Fourier coefficient, 

i.e. the equation ya = R  sin k0t for measuring the kth sine Fourier coefficient. 

Here, the values Ψe and Ψa present the sampled values of the dithered input signal y(t) 

and dithered basis function ya(t) within time interval (T), respectively. In order to measure 

M coefficients this structure is implemented in a parallel (Fig. 1c), where each coefficient 

is measured as shown in Fig. 1b.  

 
a) 

 
b) 

 
c) 

Fig. 1 Stochastic measurement, based on A/D conversion (ADC) and accumulation 

(ACC), of: a) the mean value   of a product of two signals, b) one coefficient of 

the orthonormal expansion, c) M coefficients of the orthonormal expansion 
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The digital stochastic measurement system consists of three blocks: a block for signal 

conditioning (amplification, linearization, filtering, level adjustment, noise suppression, 

electrical isolation), a block for digital stochastic measurement and a block for data processing, 

recording and displaying. The system was implemented using the Matlab software package. 

Conditioned signal is an input signal of a DSM block. The outputs of the DSM block are the 

Fourier coefficients, where each Fourier coefficient is a function of all analog input signal 

samples over the entire measurement interval. The measurement result is a set of harmonics, 

which can be the input for calculating digital values of signals in the time domain. 

3. INPUT SIGNAL AND SIMULATION MODEL 

The DSM block input signal is a conditioned EOG signal. Typical EOG signals have 

amplitudes in the range of mV with a frequency of DC component of 100 Hz [15]. The EOG 

signal is one of the standard biopotential that is measured during deep sleep, or during the so-

called REM (Rapid-Eye-Movement) sleep phase. The REM phase involves very fast and 

random eye movements. In a normal night's sleep, the REM phase occurs every 90 minutes 

and lasts 5 to 30 minutes continuously.  

Aiming to obtain correct simulation results, which we can later compare with each 

other, the same EOG signal was used for each simulation. The repeatability of the EOG 

signal cannot be achieved by measurement on a human subject, and real "live" 

measurements for each cycle of simulation and experiment. For this reason, the source of 

the input EOG signal in the simulation measurements was not a human subject, but a digital 

data source of conditioned signals that was made from records previously measured by 

standard EOG measurement instrument [16, 17]. The DSM block input signal represents the 

signal extracted from a real measurement session of the EOG signal (period of 10 s 

downloaded from PhysioNet [16]), and is shown in Fig. 2. The range of this signal is from -

0,43 mV to 0,35 mV. 

 

Fig. 2 Input signal – 10 s extracted from real measurement session of EOG signal 

Given that amplification and level transition are common procedures for signal 

conditioning, these signal values are amplified 1000 times and superimposed with 0,025 V. 

Therefore, the conditioned EOG signal is the input of the DSM block. In preparatory real 

measurement (which was a typical digital measurement procedure), the EOG signal was 

stored with 250 samples per second (S/s). To obtain a smoother input, or less stepped signal, 



92 J. ĐORĐEVIĆ KOZAROV, M. SIMIĆ, M. STOJANOVIĆ, D. ŽIVANOVIĆ 

 

these 250 S / s records were transformed into 5000 S / s data. For resampling input signal by 

an integer factor, with a given value of 20, the Matlab function 'interp' has been used. Each 

sample is stored as a 64-bit floating point value.  

4. SIMULATION MODEL FOR EOG SIGNAL MEASUREMENT BY DSM METHOD 

The simulation model has been realized using the software package Matlab. The DSM 

block was configured according to the data presented in Table 1. 

Four sets of 100 simulations (4 x 100) were run - one set of 100 simulations without 

adding noise and the other three sets of 100 simulations with the addition of white noise to the 

input signal. The added noise had an uniform probability density function, and the signal-to-

noise ratio (SNR) was 10 dB, 0 dB, and −10 dB, respectively. It was assumed that there were 

no anti-aliasing (analog low-frequency) filters before block for the DSM, which would limit 

the frequency range of noise at the input. On the one hand, the absence of an anti-aliasing 

filter before the DSM block is inconvenient from the noise level entering the digitization 

block, but on the other hand, this is better from the point of view of the size and optimization 

of the conditioning block due to the reduction in the number of components. 

Table 1 DSM block properties 

Number of measurements 4 x100 (without noise added and for each level of SNR) 

SNR level Without adding noise,  

10 dB, 0 dB, -10 dB 

A/D converter Resolution: m1 = 6 bits 

Input range: ±R and R = 2,5 V 

Sampling frequency: fADC = 250 kHz 

Measurement interval [0,T], T ϵ {0.1 s; 0.2 s; 0.5 s; 1 s; 2 s} 

Fundamental frequency f0 ϵ {10 Hz; 5 Hz; 2 Hz; 1 Hz; 0.5 Hz} 

Number of samples per 

measurement interval 

N = fADC·T → N ϵ {25000; 50000; 125000; 250000; 500000} 

Digital dithered base 

functions stored in memory 

Simulating an ADC with properties: 

Resolution: m2 = 8 bits 

Range: ±R and R=2,5V 

Sampling frequency: fADC = 250 kHz 

Number of measured 

coefficients 

DC component + 15 sine coefficients + 15 cosine coefficients 

The final result of one set of simulations, in the time domain, is calculated as average of 

the results of all simulations in that set. Therefore, at the end of each measurement series, the 

reproduced signal is obtained as a result. After completing the entire simulation process, 

measurement errors (maximum absolute error, maximum relative error in relation to the input 

signal range, mean absolute error, mean relative error in relation to the input signal range) in 

the frequency and time domains are obtained, as well as the corresponding graphs of the input 

and reproduced signal. Absolute error presents the absolute value of the difference in the 

measured (obtained by DSMM) and actual (input signal) value of the signal, and relative error 

is the ratio of the absolute error to the actual value, expressed in percentages. For each 

measurement interval, from 0,1 s to 2 s, two groups of sets of simulations were carried out, for 
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15 and 25 harmonics, respectively. So, the total number of simulations that are done is 4000 (5 

measurement intervals, 2 different harmonic numbers, 4 sets of 100 simulations each). 

After analyzing the obtained results, with various lenght of measurement intervals and 

various number of harmonics, we concluded that the best results are obtained for a 

measurement interval of 0,5 s and 15 harmonics. Measurement errors in the time domain 

are shown in Table 2. The duration of the simulation in this case is 107,5 s. 

Table 2 Measurement errors in time domain for measuring interval of 0,5 s  

 

The corresponding graphs, which represent the comparison between the input and the 

reproduced signals, for the measurement interval of 0,5 s and different SNR values, are 

presented in Fig. 3 to Fig. 6.  

Enlarged graphics, shown in Fig. 3 to Fig. 6, are presented in Fig. 7 to Fig. 10. 

 

Fig. 3 Graphical presentation of input and reproduced signals - no noise added. 

 

Fig. 4 Graphical presentation of input and reproduced signals - SNR = 10 dB 

ERRORS 
No noise 

added 

SNR 

10 dB 0 dB -10 dB 

Max absolute [mV] 0.5469 0.5456 0.5505 0.5221 

Max relative [%] 27.2708 27.2056 27.4527 26.0380 

Mean absolute [mV] 0.0137 0.0138 0.0145 0.0208 

Mean relative [%] 0.6857 0.6893 0.7212 1.0396 
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Fig. 5 Graphical presentation of input and reproduced signals - SNR = 0 dB 

 
Fig. 6 Graphical presentation of input and reproduced signals - SNR = -10 dB 

 
Fig. 7 Zoomed graphics from Fig. 3. 

 

Fig. 8 Zoomed graphics from Fig. 4. 
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Fig. 9 Zoomed graphics from Fig. 5. 

 

Fig. 10 Zoomed graphics from Fig. 6. 

Significant deviations of the reproduced signal relative to the input signal can be observed 

at the beginning and at the end of each measurement interval, i.e. every 0,5 s. They are a 

consequence of the occurrence of the Gibbs phenomenon [18-21]. This phenomenon 

significantly increases the measurement error. For SNR 0 dB the maximum relative error 

reaches as high as 27,45%. 

As it is known, the Gibbs phenomenon [18, 19] is the unique manner in which the 

Fourier series of a piecewise continuously differentiable periodic function behaves at a 

jump discontinuity. Namely, the nth partial sum of the Fourier series has large oscillations 

near the jump, which increases the maximum of the partial sum, and that overshoot does 

not decrease as n increases [19-21].  

If the DSM approach is implemented and if there is a discontinuity between the first 

and the last analog sample over a measurement interval the measurement error is 

increased, and the reason of increasing layed in the Gibbs phenomenon appearance. This 

relatively high error appears at the edges of the measurement interval (at the places of the 

discontinuity) and it can be explained by the Gibbs phenomenon.  

5. DEVELOPMENT OF MODIFIED DSM METHOD 

Since the influence of the Gibbs phenomenon on the measurement error is significant, the 

idea of modifying the digital stochastic measurement method has appeared. The modification 

is to achieve the overlap of the measurement intervals (time windows) Tk. For this purpose, an 
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identical measuring channel that measures the same EOG signal, but measurement begins 

with a defined delay dT, was implemented. In this paper, the delay dT is defined as dT = T/4. 

Fig. 11 shows the overlap of the measurement intervals Tk and T’k (k = 1, 2, ...), which 

represent the measurement intervals in the measuring channels Ch1 and Ch2, respectively. 

The gray parts of the measurement intervals represent areas where the Gibbs phenomenon 

occurs, while the white parts indicate areas where the Gibbs phenomenon does not exist.  

As a final result, the resulting signal is obtained by taking from each measurement channel 

only samples from the white parts of the overlaped intervals (dashed line). Fig. 12 shows the 

final result of overlapping measurement intervals and getting the resulting signal. This method 

can be named the modified digital stochastic measurement method (MDSMM). 

 

Fig. 11 Graphical presentation of measurement intervals overlapping. 

 

 

Fig. 12 Graphical presentation of resulting signal obtaining. 

After completing the entire simulation process, the results are measurement errors in the 

time domain (maximum absolute error, maximum relative error in relation to the input signal 

range, mean absolute error, mean relative error in relation to the input signal range), as well as 

the corresponding graphs of the input signal, the reproduced signals for each measurement 

channel, and the resulting signal. Here, the absolute error presents the absolute value of the 

difference in the measured (obtained by MDSMM) and actual (input signal) value of the 

signal, and relative error is the ratio of the absolute error to the actual value, expressed in 

percentages.  

The comparisons between the input and the resulting signals, obtained by MDSM method 

for various SNR levels, are presented in Fig. 13 to Fig. 16, respectively. Also, the comparisons 

between the input and the resulting signals, obtained by classical measurement method for 

various SNR levels, are presented in Fig. 17 to Fig. 20, respectively. 
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A comparative overview of the time domain measurement errors for both measurement 

methods, as well as for the classical digital measurement method for measuring intervals of 

0,5 s and 15 harmonics, are presented in Table 3. 

The duration of the simulation in the case of the proposed novel method is 370,78 s, which 

is significantly longer than the simulation for measuring the EOG signal by the DSM method. 

The reason for such a long duration of the simulation lies in the fact that in the case of 

overlapping time windows, it is necessary to make twice as many measurements of the 

Fourier coefficients and to merge the two reproduced signals into the resulting signal. This 

requires a large number of calculations, as well as a large memory space. 

Table 3 Comparative view of measurement errors obtained by classical measurement 

method, by DSM method and by MDSM method 

ERRORS Classical digital measurement DSMM MDSMM 

 No noise added   

Max absolute [mV] 0.0308 0.5469 0.0542 
Max relative [%] 3.9589 27.2708   2.7013 
Mean absolute [mV] 0.0165 0.0137 0.0063 

Mean relative [%] 2.1277 0.6857 0.3117 

SNR level: +10 dB 

Max absolute [mV] 0.0183 0.5456 0.0528 
Max relative [%] 2.3588 27.2056   2.6350 
Mean absolute [mV] 0.0034 0.0138 0.0063 

Mean relative [%] 0.4359 0.6893 0.3146 

SNR level: 0 dB 

Max absolute [mV] 0.0442 0.5505 0.0572 
Max relative [%] 5.6804 27.4527   2.8516 
Mean absolute [mV] 0.0098 0.0145 0.0070 

Mean relative [%] 1.2654 0.7212 0.3511 

SNR level: -10 dB 

Max absolute [mV] 0.1479 0.5221 0.0922 
Max relative [%] 19.0183   26.0380   4.5955 
Mean absolute [mV] 0.0313 0.0208 0.0144 

Mean relative [%] 4.0225 1.0396 0.7157 

 

Fig. 13 MDSM method: Presentation of input and resulting signal without noise added. 
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Fig. 14 MDSM method: Presentation of input and resulting signal with SNR = +10 dB. 

 
Fig. 15 MDSM method: Presentation of input and resulting signal with SNR = 0 dB. 

 
Fig. 16 MDSM method: Presentation of input and resulting signal with SNR = -10 dB. 



 Reduction of Gibbs Phenomenon in EOG Signal Measurement Using the MDSM Method 99 

 

 
Fig. 17 Classical method: Presentation of input and measured signal without noise added. 

 
Fig. 18 Classical method: Presentation of input and measured signal with SNR = +10 dB. 

 
Fig. 19 Classical method: Presentation of input and measured signal with SNR = 0 dB. 
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Fig. 20 Classical method: Presentation of input and measured signal with SNR = -10 dB. 

5. CONCLUSION 

This paper presents a simulation model development for digital stochastic measurement of 

EOG signal in the time domain, emphasizing the problem of the influence of the Gibbs 

phenomenon on measurement errors. The realization of DSM block is carried out by 6-bit and 

8-bit A/D converters. Tests were carried out without adding a noise, and with adding a noise 

with various level of signal-to-noise ratio (SNR): 10 dB, 0 dB, and −10 dB. The achieved 

mean relative error is 1,04 % and maximal relative error is 26,04 %, when SNR level is -

10 dB. The corresponding plots of the input signal and achieved reproduced signals are 

presented for each set of simulations. 

Based on results, it can be concluded that the Gibbs phenomenon that occurred at the 

ends of each measurement interval has the greatest influence on the measurement errors. 

A new method, with overlapping measurement intervals, has been developed in order to 

eliminate Gibbs phenomenon and decrease the measurement error. Thus, in the worst 

case, i.e. when SNR is -10 dB, the obtained mean relative error and maximal relative 

error are decreased, down to 0,72% and 4,6%, respectively. Considering these results, the 

suggested approach can be used for design and realization of an instrument with 

sufficient accuracy, benefiting from the hardware simplicity of the method. 

The duration of the simulation in the case of the proposed novel method is significantly 

longer than the simulation for measuring the EOG signal by the DSM method. Therefore, it is 

concluded that the frequency of 250 kHz is unsatisfactory from the aspect of practical 

realization of the proposed model for digital stochastic measurement of the EOG signal. The 

idea for the future research is to develop a simulation model with a lower sampling frequency 

and implement the proposed method. 
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