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Abstract. Anticipating water levels in vast riverbeds is crucial for preventing and 

mitigating floods or droughts, assessing power plant capacity, and facilitating navigation 

management. This study introduces an innovative water level prediction model utilizing 

an Extreme Learning Machine developed to solve the issues of low performance of 

existing forecasting methods. Development of such a system is of extreme importance 

when talking about the largest European river – the Danube River. Experimental findings 

reveal the model's satisfactory performance across various accuracy metrics, complexity 

considerations, and calculation speed. The prediction with the highest error rate based 

on MAPE criteria was for Prahovo water level prediction over a 365-day period at 

2.02%, whilst the most accurate predictions were for Novi Sad and Banatska Palanka 

over 30 days and 180 days horizons, respectively, at 0.0550%. The highest coefficient of 

determination (R2) was achieved with the Novi Sad data at 0.9968, whilst the lowest was 

observed with the Prahovo data at 0.7353. The ELM model achieved high precision by 

adjusting the activation functions of the hidden layer neurons, which involved using 

different combinations of sigmoid and radial-basis activation functions. 
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1. INTRODUCTION 

Water is one of the most precious natural resources we possess [1]. Without it, life on Earth 

would not exist. The laws of nature limit our access to water. Although there is an abundance 

of water on Earth, it is not always easily accessible when needed, at the correct place, or of the 

right quality. Chemical pollutants that were improperly disposed earlier are now showing up in 

our water systems. The study of hydrology has evolved over time in order to better understand 

the complex water systems of the Earth and help with water-related problems. Hydrological 

challenges require innovative solutions. 

On the other hand, it is widely acknowledged that the Danube River provides the foundation 

for the interstate collaboration and economic growth of the Danube countries. However, the 

Danube has a significant role in other areas as well, like the promotion of general cooperation 

among the Danube countries and socioeconomic, cultural, and political development. The 

Danube River plays a major role in planning and development of appropriate ecological 

concepts in the sphere of environmental protection, as well as in other areas of interstate 

cooperation involving the entire Danube region. 

Reliable forecasts for various forecast horizons are necessary for solving critical decision-

making problems. The hydrological characteristics of the Danube River impact a number of 

concerns, including navigation, droughts and floods, power plant capacity, and other issues. In 

time series research, forecasts have traditionally been made using a wide variety of statistical 

methods, including autoregressive models (ARIMA, SARIMA, etc.), exponential smoothing, 

dynamic regression models and many others [2-7]. Along with these methods, deep learning 

models have become popular in research for solving time-series prediction challenges due to 

their ease of implementation, availability of tools to create prediction models and notable 

achievements in many different areas of application [8-10]. Deep learning techniques 

encompass various artificial neural network structures, where recurrent networks such as 

Long Short-Term Memory (LSTM) [11], [12], Gated Recurrent Units (GRU), etc. stand out in 

the time series prediction domain due to their ability to capture time series patterns from 

historical data [13], [14]. The issue that arises with deep learning models is the lengthy process 

of network training when dealing with a considerable amount of data, together with the complex 

iterative computation of network parameters. This is particularly an issue with recurrent models 

as their training process causes high memory consumption due to the models' memory effect 

and due to the use of backpropagation through the time algorithm for updating the network 

weights. Another approach, the Extreme Learning Model (ELM), has arisen as a response to 

the expensive nature of neural network training. Unlike typical neural networks, it does not 

utilize an iterative error function minimization strategy. In this algorithm, a subset of network 

weights is initialized to a random value and during training, the rest of the weights are adjusted 

according to the training input-output pairs using a much simpler process. Due to its speed, 

simplicity and increasingly widespread usage, ELM is chosen to be the algorithm implemented 

in this paper for predicting the water level of Danube on multiple measurement stations. 

A number of researchers address the hydrological forecasting challenges of the Danube 

River by employing different statistical or neural network modeling methodologies [15-19]. 

Because hydrological time series are influenced by numerous independent variables, traditional 

forecast models struggle to provide effective forecasts. Some advanced hybrid forecasting 

models have recently been created in order to improve reliability and precision of forecasting 

results [19-24]. 
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In the study presented in this article, a development of a specific Extreme Learning Machine 

(ELM) model is performed to make one-step-ahead predictions for daily-time horizons in the 

Danube River flow through the Republic of Serbia, at seven measuring stations. They are: 

Bezdan, Zemun, Novi Sad, Banatska Palanka, Veliko Gradište, Donji Milanovac, and Prahovo. 

The initial study in this field was conducted in [25]. Further research, performed in this study 

aims to assess and improve the accuracy of the forecasts. Brief descriptions of water level data 

and ELM modeling follow. After that the Python computer language implementation of the 

forecasting model is shown. At the conclusion, appropriate forecast performance measures are 

evaluated and discussed together with suggestions for future research. 

2. STUDY AREA 

The Danube River's natural attributes set it apart and differentiate it from other European 

rivers. This river is Europe's watershed due to its length of 2,888 km, navigability, rich natural 

content, fish, and plant life. Geographically, the Danube springs in the Schwartzwald Mountains 

of Baden-Württemberg, which are located in the southwest of the Federal Republic of Germany. 

It is formed by the merger of the smaller rivers Briga and Breg near Donaueschingen [26]. The 

Danube flows from west to east, passing through several major towns in Central and Eastern 

Europe (Vienna, Bratislava, Budapest, and Belgrade) before forming a delta in Romania and 

Ukraine after 2850 kilometers on the Black Sea coast. Throughout history, the Danube has 

always been an important international waterway. 

The Danube is the second European river in length and with a long-term daily mean 

discharge of about 6500 m3/s [27]. Fig. 1 shows the portion of the flow of the Danube that 

goes through Serbia. A section of its course forms a natural border between Serbia and 

Croatia, as well as Serbia and Romania (138 km toward Croatia and 227 km toward 

Romania). The Danube has an average width of 600 meters and a maximum width of 2000 

meters at the entrance to the Đerdap Gorge. The Đerdap Gorge, which is 97 kilometers 

long, is Serbia's largest gorge. 

 

Fig. 1 The Danube River through the Republic of Serbia 
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The Danube basin, which covers an area of around 801,463 km2 and represents 10% of 

the area of the European continent, is home to approximately 80.5 million people in 19 

countries through which this river flows [27-29]. The Danube basin is separated into four 

areas based on its geological structure and geographical layout: upper, middle, and lower 

Danube, as well as the Danube's delta [30]: 

1. Upper Danube Region, between its springs and the Devin Gate, (1,880 r km (river 

kilometer), basin area: 131,338km2, long-term annual average discharge 2,051m3/s).  

2. The Central Danube Region lays between the Devin Gate and the Iron Gate (930 r 

km, basin area 444,894km2, long-term annual average discharge 5,585m3/s). 

3. The Lower Danube Region is placed between the Iron Gate and the Danube’s Delta 

(132 r km, basin area: 230,768 km2, long-term annual average discharge 6,563m3/s).  

4. The Danube Delta is located at the Black Sea coast. As a crucial wetland in the 

Danube River Basin, the Danube Delta covers 6,750 km2 in area [31], [32].  

Since the Danube River supplies water for industry, agriculture, and several eco-

systems, it is generally of tremendous ecological, social, and economic worth. In addition, 

the Danube is crucial for transportation, electricity production, recreation, tourism, fishing, 

and biodiversity. Aside from its natural features, the Danube region can be recognized by 

a variety of other characteristics, such as historical legacy, future-oriented planning, 

increased economic activity, collaboration in various areas of social life, etc. 

In 2014 the Republic of Serbia’s territory experienced one of the worst natural disasters i.e., 

an extreme flood [33]. The floods preventions systems either failed to prevent damage, or were 

never implemented. The riverbeds were rarely cleaned and maintained for decades, and the 

embankments were not renovated. The pumping stations were also neglected and their 

functionality was rarely checked. The authorities of the Republic of Serbia have conducted 

a post-disaster damage assessment after the floods [34], [35]. In general, the serious 

unpreparedness disturbed lives of many people and animals and did severe damages in 

urban systems, agriculture, and local economy [36].  

Considering the noted deficiencies and the profound impact on the community, there is a 

compelling need and a motive to proactively address and enhance flood prediction and 

prevention measures especially in the context of such a large river basin like the Danube’s 

basin. Current state of readiness, as evidenced by the 2014 flood, is insufficient to mitigate 

the potential future threats posed by the Danube River. The study, conducted in this research 

aims to contribute to the scientific understanding and practical management of water-related 

disasters. By employing advanced predictive modeling techniques, such as the ELM 

approach, this research attempts to provide accurate and timely predictions of the Danube 

River's water levels. The ultimate goal is to develop a robust framework that can assist 

authorities in the Republic of Serbia and other regions prone to flooding in implementing 

more effective flood prevention strategies. 

3. THE METHODOLOGY OF ELM MODELLING 

Extreme Learning Machine (ELM) is a feed-forward neural network (FFNN) training 

algorithm based on randomization of network weights, which is primarily applied to networks 

with a single hidden layer. ELM aims to achieve very high learning speed by initializing a 

portion of network parameters to a random value using a distribution function, rather than 

implementing an iterative process and backpropagation to update the weights' values [37]. In 
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particular, weights between the input layer and the hidden layer, as well as the bias of the hidden 

layer are randomized, while the weights between the hidden layer and the output are determined 

in a single step by solving a system of linear equations. This method is shown to be reliable 

through rigorous mathematical proofs and strong definitions [37]. 
Since no iterative steps are required, ELM's weight randomization has shown to be a much 

faster method compared to other algorithms used extensively (such as Gradient Descent) while 
keeping accuracy at a high level. Short training times achieved by the algorithm combined with 
easy implementation of feed-forward NNs have contributed to ELM being widely used in many 
different fields of application.  

To generalize, Extreme Learning Machine time series modelling offers several advantages 
over other forecasting methodologies: 

▪ Fast Training: ELMs usually consist of a single layer of hidden neurons that are 
randomly initialized, resulting in much quicker training when compared to conventional 
neural networks such as feedforward or recurrent neural networks. This enables faster 
testing and refinement of models [38]. 

▪ Simple implementation: ELMs are easy to implement and need minimal hyperparameter 
adjustment. Due to the single layer structure, they have a fewer number of parameters 
to optimize in comparison to other neural network topologies, which makes them 
simpler to train and implement. 

▪ Efficient nonlinear modelling: ELMs have demonstrated the ability to perform as well 
as more advanced time series forecasting techniques, using fewer computer resources. 
Time series data with nonlinear relationships can be captured by ELMs without the need 
for explicit feature engineering. They automatically extract pertinent aspects from the 
incoming data, enabling them to efficiently represent intricate patterns and dynamics. 
This efficiency makes them appropriate for real-time forecasting applications or 
situations with restricted processing resources [39], [40]. 

▪ Generalization capability: ELMs have shown strong generalization capacity, especially 
when working with noisy or high-dimensional time series data. When applied to 
properly pre-processed data, overfitting is less likely to occur [41]. 

▪ Scalability: ELMs are capable of efficiently processing large-scale time series datasets 
because of their straightforward and parallelizable training procedure. Their scalability 
makes them well-suited for applications requiring handling large volumes of data, 
including financial forecasting or energy demand prediction [42]. 

A. Mathematical formulation of the ELM model 

Mathematical model of the ELM algorithm will be explained on an example regression 

network (Fig. 2) with L hidden nodes, where: 

▪ xi is the i-th input node for input data of length N, 

▪ W is the weight matrix of connections between the input and the hidden layer, 

▪ bi is the i-th hidden layer bias coefficient, 

▪ ai is the activation of i-th hidden node, 

▪ y is the output node, 

▪ βi is the weight of a connection between the i-th hidden neuron and the output. 

The goal of the ELM training algorithm is to find the optimal values of the output weights 

β1, β2, … βL in order to find the best fit model based on the training data. The training algorithm 

consists of the following steps: 
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1) Training data preparation  

2) Weight and bias initialization  

3) Hidden layer output matrix calculation - H 

4) Calculation of H† (the Moore-Penrose inverse of H)  

5) Output weights vector calculation 

 

Fig. 2 Neural network representation of ELM 

 

Before the training, the pre-processed data set is split into training and test sets. The 

sets consist of pairs of input vectors and corresponding outputs. The portion of the data set 

used for training is usually picked to be 60% - 80% of the entire dataset. 

Firstly, the input weights in matrix W and the biases of the hidden layer are assigned 

random values with a selected probability distribution. Then, the training samples are 

passed to the network one by one. For each input-output training pair, the activations of the 

hidden neurons are calculated by applying an arbitrary activation function g(x). For the 

training sample t, the activations are computed as specified in equation (1): 

 𝑎𝑖
(𝑡)

= 𝑔(𝒘𝑖𝒙
(𝑡) + 𝑏𝑖) (1) 

Here, wi is the vector of weights connecting i-th hidden node and the inputs, and x(t) is the 

t-th input vector of the training set. All the activations are then stored in the hidden layer 

output matrix H, as shown in equation (2). The matrix consists of L columns (one for each 

hidden neuron) and n rows where i-th row of the matrix contains activations calculated for 

the i-th training pair. 
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According to the model, the network output can be determined as a weighted sum of 

hidden node activations with β being the output weights vector. If all the output data in the 

training set are stored in a vector y, then it follows that Hβ = y which represents a system 

of linear equations in output weight coefficients consisting of n equations and L unknowns. 

The solutions to Hβ = y can only be approximate since the high number of training samples 

results in a system with many more equations than variables which is impossible to solve 

directly. An approximate solution can be selected so that the norm of the system is 

minimized, i.e.: 

 ‖𝑯�̑� − 𝒚‖ = 𝑚𝑖𝑛
𝜷

‖𝑯𝜷 − 𝒚‖ (3) 

In other words, the resulting vector of Hβ is as close as possible to y, which results in a 

least-squares solution. It can be shown that the solution which satisfies the minimum norm 

condition is in the form of [43]: 

 �̑� = 𝑯†𝒚 (4) 

Where H† represents the Moore-Penrose pseudoinverse matrix of H, which can be 

calculated as follows: 

 𝐇† = (𝐇T𝐇)−1𝐇T (5) 

In this way, the network output weights are determined directly using a single matrix expression 

and calculating the Moore-Penrose pseudoinverse could be performed with the help of simpler 

algorithms such as singular value decomposition. After determining the output weights, the 

model is completely trained and can be tested or used for making predictions. 

B. ELM model fitting and prediction accuracy measures 

Some of the metrics commonly used for evaluating the accuracy of neural network 

prediction are Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), R2 or the coefficient of determination 

and many others. In this paper, MAPE, RMSE and R2 were used for evaluating the models. 

MAPE quantifies the accuracy of predicted values by calculating the average of the 

absolute percentage errors over all the predictions. The use of MAPE is often suitable for 

evaluating predictions made for huge datasets. MAPE can be calculated as follows: 

 𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

𝑝𝑖−𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1 ) ⋅ 100%, (6) 

where pi is the value predicted by the model, yi is the actual value from the dataset and n is 

the number of values in the dataset. 

RMSE is another metric commonly employed in regression or time series model 

training. It quantifies the deviation of the predicted data from the line of best fit. It can 

serve as a decisive factor for choosing the most effective forecasting model from a set of 

models trained on the same dataset. RMSE can be calculated as follows: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
(∑ (𝑝𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 ). (7) 
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R2, also known as the coefficient of determination, is a statistical metric used in 

regression analysis to quantify the percentage of variance in the dependent variable that 

can be predicted by the independent variable. R2 quantifies the degree to which the 

regression model fits the dataset. R2 can be calculated as follows: 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑝𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−�̑�)2𝑛
𝑖=1

 (8) 

where ŷ is the mean value of the dataset. A model can be considered as a good fit if its R2 

value is close to 1. 

4. DANUBE WATER LEVEL DATA 

The source of the data used for creating ELM water level prediction models comes from the 

hydrology section of the online-accessible weather records of Republic Hydrometeorological 

Service of Serbia (RHSOS) which contains measurements of a variety of hydrological 

characteristics of rivers in Serbia [44]. These characteristics include daily water level, water 

temperature, water flow measurements, ice phenomena, quality of water, and more. 
The water level data provided by RHSOS is collected from the network of measurement 

stations installed on various locations including many rivers and lakes in Serbia. As of 
2023, a total of 211 such stations are located throughout the territory of Serbia, with 15 of 
those stations being located on the Danube River [45]. There are a number of instruments 
that are utilized at the stations in order to measure the water level such as limnigraph water 
gauges and/or digital devices. At each station, measuring of the water level takes place 
once a day at a particular hour, on a regular basis. Water level is measured in centimeters 
and relative to a zero-elevation point defined for each station. Zero-elevation points are 
given in meters above the Adriatic Sea. 

Every year, in the middle of the year, RHSOS publishes an annual report that includes 
information on the surface water parameters that were measured during the previous year. The 
section of the annual report regarding water level includes daily measurements for all stations, 
as well as minimum, average, and maximum readings for each month and for the entire year. 

The ELM model for predicting the Danube water level was developed based on data from 
several RHSOS annual reports. Out of the total of 15 stations, 7 were selected: Bezdan, Novi 
Sad, Zemun, Banatska Palanka, Veliko Gradište, Donji Milanovac, and Prahovo. The RHSOS 
online source offers reports starting from 1991 up to 2021 (at the time of developing the 
models). However, for some stations, data before a particular year is missing and only a subset 
of the annual reports was used per station, starting from the year when the data was recorded 
for the first time for the given station and up to 2021 Fig. 3 provides a graphical representation 
of each of the stations’ datasets, where water level values are shown relative to the Adriatic Sea 
level i.e. including the zero-elevation points of each station. Fig. 4 shows the distribution of 
water levels appearing in the data set relative to zero-elevation points. Table 1 presents a 
summary of station statistical details as well as the starting year of the subset of annual reports 
used for a particular dataset. Table 2 shows a sample of one of the datasets. 
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Fig. 3 Water level data measurements from each station 



86 M.MILIĆ, N. RADIVOJEVIĆ, J. MILOJKOVIĆ, M. JEREMIĆ 

 
Fig. 4 Water level distribution violin plots across stations 

Table 1 Statistical details of different datasets 

 Bezdan Novi 
Sad 

Zemun Donji 
Milanovac 

Veliko 
Gradište 

Banatska 
Palanka 

Prahovo 

Zero-elevation [m]  80.64 71.73 67.87 62.24 62.17 62.85 29.02 
Starting year 2004 2004 2009 2007 2006 2008 2018 
No. of samples 6575 6575 4748 5479 5844 5114 1461 
Mean relative water level [cm] 171.64 230.49 331.28 651.34 757.64 701.14 214.18 
Std. deviation 139.4 121.35 95.51 97.44 23.01 29.75 168.41 
Min. [cm] -101 -13 184 140 588 551 -72 
25% (Q1) [cm] 166 141 256 642 745 680 80 
50% (Q2) [cm] 148 215 312 687 755 695 190 
75% (Q3) [cm] 248 302 388 705 770 721 324 
Max. [cm] 755 744 691 742 960 840 718 

For each dataset, the data from the reports has been organized into a single time series 

with samples ranging from a starting date to 31.12.2021. and then stored in individual .csv 

files. Missing data was imputed using linear interpolation. In order to eliminate unwanted 

noise in the data, a convolution filter (Centered Moving Average) was employed on each 

individual dataset. 

5. DEVELOPMENT AND TRAINING OF ELM MODELS 

Prediction of the next sample in a time series is in most cases based on the samples 

collected in a number of previous consecutive timesteps. For this purpose, the data is firstly 

reorganized into input-output pairs that are appropriate for time series prediction before the 

ELM models are trained. The sliding window technique is used to generate vector pairs for 

each model. This involves creating input-output pairs from consecutive dataset points of 

each dataset. For a model with an input length of N, the i-th pair is formed by taking in 
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total N+1 consecutive points, with points xi, xi+1, xi+2, … xi+N-1, forming the input vector of 

the pair and taking xi+N as the target or the desired output. The total number of input-output 

pairs generated in this way is n-N-1, where n is the length of the dataset used for training. 

In this paper, 70% of all reorganized data in each dataset was used for training. The 

accuracy of the forecast can be influenced by the length of the input vector, also known as 

the prediction horizon, depending on the time series [46]. This study involved developing 

models for each station with input lengths taking 30, 60, 120, 180, and 365 samples and 

then selecting the model that yields the most accurate predictions after training. This 

accounts for a total of 35 models, one per horizon length and per dataset.  

 The structure of each ELM model is selected using the method of optimal pruning 

described in detail in [47]. This method involves selecting an initial number of hidden 

neurons, grading the neurons according to their “usefulness” (using RMSR [48]), then 

performing a Leave-One-Out (LOO) cross-validation to evaluate the model performance 

and, in the end, discarding some of the neurons based on their grade and the results of LOO. 

For models in this study, hidden layers were initially assigned 600 neurons in total, 100 of 

them implementing the sigmoid activation function and the other 500 the radial basis 

function with L2 norm, which is commonly used in ELMs [49]. 

6. RESULTS AND DISCUSSION 

After training all the models, prediction testing was conducted using the corresponding 

test sets, which consisted of the remaining 30% of the data set that was not used for training. 

Table 3 shows the accuracy metrics for each station across different horizons, together with 

the count of hidden neurons in each network following optimal pruning. Fig. 5 shows the 

graphical representation of predictions with the highest R2 value among different horizons 

over the entire test set for each station. Additionally, the subset of 60 consecutive 

predictions for which each stated model had the lowest RMSE is shown. Predicted values 

take the zero-elevation level into account. Plot lines colored in blue represent the actual 

recorded values, while red lines represent predictions. 

Given the results in the tables, it can be concluded that the methodology used for 

generating and training has yielded models that perform very well across nearly all datasets. 

Most of the models obtained an R2 value larger than 0.95, except for the model for the 

Veliko Gradište station which resulted in R2 around 0.86 across all horizons due to larger 

levels of noise in the data than in the other datasets, but had considerably low RMSE values 

on the other hand. Among all the datasets, the Prahovo station had the smallest number of 

samples and thus the small training and test sets, which explains the drop in R2 as the 

horizon increases. It can also be noticed that the longer the horizon, the less neurons would 

be dropped out of the network after pruning. Overall, the models were able to closely match 

the trend and predict sudden rises/drops of the water level, regardless of the water level 

values distribution and the value of the zero-elevation point. 
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Table 2 Summary of prediction accuracy and network complexity according to different 

criteria – a) Bezdan model, b) Zemun model, c) Novi Sad, d) Veliko Gradište 

model, e) Donji Milanovac model, f) Banatska Palanka model, g) Prahovo model 

Bezdan MAPE [%] RMSE [cm] R2 Sigmoid neurons RBF L2 neurons 

30 0.0759 9.5251 0.9932 30 160 
60 0.0784 9.7075 0.9930 48 268 

120 0.0858 10.2512 0.9922 81 433 
180 0.0888 10.4440 0.9920 92 479 
365 0.1154 12.8260 0.9881 100 500 

 

Zemun MAPE [%] RMSE [cm] R2 Sigmoid neurons RBF L2 neurons 

30 0.0556 5.2561 0.9961 21 114 
60 0.0579 5.4199 0.9959 47 206 

120 0.0604 5.6002 0.9956 60 334 
180 0.0705 6.3614 0.9939 99 485 
365 0.0817 7.3589 0.9907 100 500 

 

Novi Sad MAPE [%] RMSE [cm] R2 Sigmoid neurons RBF L2 neurons 

30 0.0550 5.6510 0.9968 28 138 
60 0.0563 5.7810 0.9967 39 218 

120 0.0604 6.1031 0.9963 78 388 
180 0.0619 6.1402 0.9963 100 495 
365 0.0832 7.9453 0.9939 100 500 

 

Veliko Gradište MAPE [%] RMSE [cm] R2 Sigmoid neurons RBF L2 neurons 

30 0.0562 5.1765 0.8642 8 48 
60 0.0558 5.1451 0.8653 39 171 

120 0.0558 5.1348 0.8667 39 217 
180 0.0553 5.0975 0.8679 62 265 
365 0.0561 5.1336 0.8678 99 499 

 

D. Milanovac MAPE [%] RMSE [cm] R2 Sigmoid neurons RBF L2 neurons 

30 0.1202 11.9476 0.9747 25 99 
60 0.1213 11.9684 0.9747 51 238 

120 0.1226 12.0287 0.9747 89 445 
180 0.1245 12.1552 0.9744 100 500 
365 0.1301 12.5917 0.9732 100 499 

 

Ban. Palanka MAPE [%] RMSE [cm] R2 Sigmoid neurons RBF L2 neurons 

30 0.0559 5.0858 0.9562 35 152 
60 0.0557 5.0737 0.9565 49 209 

120 0.0551 5.0256 0.9576 48 267 
180 0.0550 5.0179 0.9580 93 469 
365 0.0555 5.0105 0.9564 100 497 

 

Prahovo MAPE [%] RMSE [cm] R2 Sigmoid neurons RBF L2 neurons 

30 0.4234 18.9374 0.9833 14 79 
60 0.4210 18.9479 0.9836 29 163 

120 0.8653 34.2724 0.9483 84 408 
180 1.0182 40.1830 0.9301 87 363 
365 2.0199 78.2243 0.7353 77 406 
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 a) 

 

 b) 

 

c) 
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 d) 

 

 e) 

 

 f) 
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 g) 

Fig. 5 Predictions for different models and best RMSE days – a) Bezdan model, b) Zemun 

model, c) Novi Sad, d) Veliko Gradište model, e) Donji Milanovac model, f) Banatska 

Palanka model, g) Prahovo model  

7. CONCLUSION  

This research examines the use of Extreme Learning Machine for predicting the daily water 

level of the Danube River. Numerous experiments with different ELM hidden neuron structures 

have been conducted across various datasets of different water level distributions. Models’ 

accuracies were assessed in order to determine the optimal models for each dataset.  

The ELM models demonstrated promising results in terms of prediction, considering 

their complexity, accuracy, and training time across most datasets. Most models showed 

desirable R2 values (above 0.95), except for the Veliko Gradište station model, which had 

lower R2 values due to higher data noise but low RMSE values. Regardless of the water 

level distribution or zero-elevation point, the models were able to accurately predict the 

water level. 

For future studies, modifications of the models could be applied to further investigate 

the effect of different model parameters and properties on the models’ predictive power. 

For instance, the number of output neurons could be increased in order to perform 

predictions for longer periods, such as one week or one month ahead. Since the models in 

this paper contained neurons of mixed activation functions, the effect of each activation 

function could be investigated by creating models with hidden layers with a single 

activation function and their performance can be compared with the models with mixed-

activation function in hidden layers’ neurons. 
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