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Abstract. In this paper, an effort would be made to provide a review of current state of the 

development of artificial glands within endocrine neural networks. The main goal is to 

systematize the approaches of building the glands, to offer mathematical apparatus behind 

them, and to describe control logics enabling smooth work and efficient synergy between the 

glands and traditional neural networks. In the final phase, this work will offer 

recommendations for selecting optimal gland profile in accordance with a specific use case.  

Key words: Endocrine neural network, artificial gland, control systems, environmental 

stimulus, disturbance processing. 

1. INTRODUCTION 

Artificial Neural Networks (ANNs) find extensive applications in control systems 

[1,2,3,4]. They emulate the functionality of the human nervous system, comprising 

interconnected neurons, hence their name. ANNs serve as nonlinear models for data 

generalization pertinent to specific processes, effectively tackling the complexity and 

nonlinearity inherent in systems. Consequently, they are employed to delineate intricate 

relationships between inputs and outputs, as well as for pattern recognition. ANNs exhibit 
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rapid and high-quality data processing capabilities, and once trained, these networks can 

predict potential states or answer queries regarding 'What if?' scenarios. While various types 

of ANNs and their iterations are utilized in control systems, the following are frequently 

considered the most prevalent. 

A Feedforward Neural Network (FNN) [5] is a commonly employed type of ANN, 

frequently utilized for regression problems. It operates with information flowing through the 

network in a unidirectional manner, lacking feedback connections within the network. There 

exist two primary types of feedforward networks: single-layer networks comprising only one 

hidden layer, and multilayer networks capable of having multiple hidden layers. In [6], an 

overview of the utilization of these neural networks for control purposes is presented. This 

overview highlights the distinctions, as well as the advantages and disadvantages, between 

variations of feedforward neural networks. A Cascade Forward Neural Network (CFNN) [7], 

unlike the basic FFNN, has feedback connections that link the input and output layers. It is 

often used for analyzing time series data and provides feedback about the current state of the 

system. Recurrent Neural Networks (RNNs) [8] use information from the previous time step, 

allowing them to remember a sequence of data. RNNs have an additional recurrent layer, 

enabling the use of the output from the previous time step when processing the current input. 

This type can be viewed as adding a memory cell to the neural network. RNNs are suitable for 

speech recognition, applications predicting the next word a user might type, translation, etc 

[9,10]. 

Convolutional neural networks (CNNs) are analogous to traditional neural networks in 

that they self-optimize during operation through learning [11, 12]. A CNN typically consists 

of three layers: a convolutional layer, a pooling layer, and a fully-connected layer. This type of 

neural network is primarily used for image classification and pattern recognition, finding 

applications in facial recognition systems, autonomous vehicles, and various intelligent 

systems [13,14]. The most significant advantage of convolutional neural networks is the 

reduction in the number of parameters required for model training. Unlike traditional neural 

networks, which often require a large number of parameters for image classification tasks, 

CNNs excel in extracting features from data with a convolutional structure, thereby mitigating 

two common problems: limited computing power and duration of model training, as well as 

overfitting. The distinguishing characteristics of CNNs include: (i) neurons in a CNN are not 

necessarily connected to all neurons from the previous layer, but only to certain neurons, and 

(ii) multiple connections can share the same weight [15]. 

Forecasting using neural networks essentially involves processing a specific dataset, 

training a model, and expecting the network to perform well in predicting the output. 

However, during the learning process, the network is typically trained on a limited dataset 

comprising both training and test data, which may not encompass the full diversity of inputs 

and scenarios encountered by the neural network in a real-world environment [16]. This lack 

of diversity in the dataset means that the input database may not encompass all disturbances 

that could arise during the operation of the neural network. Disturbances to the network can 

arise from external environmental influences, such as external stimuli, or from changes in the 

internal state of the system itself, such as parameter variations due to system aging. A 

common challenge faced by ANNs is their inability to always respond adequately and 

adaptively to sudden disturbances and external influences. ANNs can be characterized by the 

following limitations: (i) they may not perform effectively at the border of chaos, operating 

more reliably in an ordered domain; (ii) they have limited memory storage for potentially 
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useful data; and (iii) they may be inefficient when confronted with dominant external 

influences. 

Mathematically speaking, the general influence of other neurons (h) on a specific neuron i, 

due to external influences, can be represented as follows: 

 _ih signal noise external stimulus= + +  (1) 

where signal represents a useful signal transmitted between neurons, noise represents internal 

disturbances originating from other neurons in the network, and the external_stimulus is an 

external influence. A neural network that adequately responds to external stimuli is 

characterized by the ability to recognize an occurring pattern and react accordingly when the 

external stimulus outweighs the noise, allowing the useful signal to prevail. 

Focusing on networks that are efficient in dealing with environmental disturbances and 

noises, in [17,18], the authors proposed a stimulus-dependent neural network (SDNN) that 

recognizes patterns, with its operation being dominantly influenced by external factors. Their 

idea was to adapt a neural network and form a model inspired by the way animals in nature 

react to environmental stimuli. They introduced SDNN with an external pattern serving as a 

fundamental element in the pattern recognition process. The research was conducted using a 

standard Hopfield model as a foundation. It was demonstrated that this modified model 

adequately responds to changes in the external environment, effectively recognizing new 

external patterns.  

The remainder of the paper is organized as follows: Section 2 provides a brief review of 

endocrine neural networks predominantly used for controlling dynamical systems. Section 3 

offers a detailed overview of various types of artificial glands, while Section 4 summarizes the 

findings and presents recommendations for selecting an optimal gland type and appropriate 

network structure.  

2. A BRIEF OVERVIEW OF ENDOCRINE NEURAL NETWORKS 

Given that artificial neural networks are inspired by human beings, it is logical to once 

again look at how humans react to external stimuli. When external influences act upon living 

beings, the nervous, endocrine, and immune systems come into play. Living beings receive 

various stimuli from the external environment, and the nervous system, as the central unit, 

detects and reacts to them. Considering the wide spectrum of stimuli from the external 

environment, the nervous system must be capable of detecting, processing, and reacting to 

them appropriately. After detecting the stimuli, the endocrine system plays a role in secreting 

hormones depending on the type of stimulus. Hormone secretion actually alters the current 

state within the system, and based on these hormones, specific cells in the body are activated 

to recognize that change. It is clear that not all cells in the body respond to all secreted 

hormones; rather, there is a cause-and-effect relationship between certain cells and hormones. 

Lastly, the immune system's reaction aims to restore the organism to its normal or original 

state before the external stimuli were induced. 

This approach, concerning the system's response to changes in external conditions, 

served as the starting idea for the development of Endocrine Neural Networks (ENNs). In 

this type of neural network, gland cells that simulate cells of the endocrine system are 

implemented and responsible for secreting hormones depending on the influences from 

the external environment. In recent years, ENNs have attracted the attention of many 
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researchers, demonstrating their ability to adequately and effectively react in systems 

operating under variable conditions and their capacity to provide the system's response to 

external environmental influences. 

The primary objective of this review paper is to offer readers a comprehensive 

understanding of the evolutionary trajectory of ENNs, elucidating their underlying 

structures and mathematical foundations. Through this exploration, we aim to underscore 

their profound relevance and efficacy within the domain of intelligent control for dynamic 

systems. Additionally, our focus extends to providing actionable recommendations for the 

selection of ENNs, tailored to environmental stimuli, disturbances, and specific application 

contexts. These insights will intend to empower researchers in strategically navigating the 

selection process, thereby optimizing the alignment between endocrine structures and the 

intricacies of their research problems within the domain of control systems. 

3. AN OVERVIEW OF ARTIFICIAL GLANDS 

The application of artificial gland cells is directly linked to adjusting neural network 

signals in response to environmental stimuli. In most cases, these stimuli are utilized to 

activate the appropriate artificial glands. The simplest and most common function of these 

glands is to produce specific hormone concentrations and influence the weight coefficients of 

the neural network. This approach has been observed in various works [6,19-21]. All other 

implementations of gland cells are partially based on these established principles, with certain 

modifications and upgrades. 

Specifically, the utilization of artificial gland cells in [6,19] involves altering the default 

structure of neural networks to create endocrine neural networks. The gland cells are assigned 

the task of producing specific hormone concentrations that affect network weights by 

multiplying their values with unique endocrine factors generated for each gland. The 

concentration of hormones depends on environmental stimuli 1 2, ,..., i    representing 

external inputs corresponding to environmental conditions, disturbances, or noise. The 

hormone concentration of a single gland (Cg) is expressed in [6,19] as: 

 ( 1) ( 1)g g g gC t C R t+ = + +  (2) 

where Rg and g are the stimulation parameter and decay constant, respectively. In 

continuation, index g represents the number of gland in question. Stimulation parameter Rg 

can be calculated as follows:  
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where g is the stimulation rate, ij is ij-th  weight coefficient and Xij represents a proper input 

value. Index i presents the current network input, while index j presents the current 

hormone. 

The neuron’s output value (before applying the chosen activation function) can be 

presented as: 
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In (4), Sj signifies a hormone sensitivity parameter within the range of 0 to 1, and n 

represents the number of inputs for the specified neuron. Neurons with lower sensitivity Sj 

might produce a negligible impact to the network, whereas those with a sensitivity parameter 

close to 1 will greatly influence network performance. 

The difference between the approaches of implementing artificial glands in [6] and 

[20] lies in the application of gland structures within different neural networks. In [6] is 

realized Orthogonal Endocrine Neural Network (OENN) merged with Orthogonal 

Endocrine Adaptive Neuro-Fuzzy Interface System (OEANFIS), both enhanced with 

endocrine factors. Such an intelligent hybrid solution was used for control purposes and 

showed improved performances after processing environmental stimuli. On the other 

hand, in [20] the same mathematical apparatus for realization of endocrine component 

was used in order to design a new type of endocrine neural network which is based on the 

gland implementation inside the traditional Nonlinear-autoregressive model with the 

exogenous inputs neural network (NARX). Graphical representation of implementing 

gland cells within the NARX network is presented in Fig. 1. The figure [20] represents a 

role model and most common way of implementing artificial glands within ANNs.  

 

Fig. 1 Implementation of Gland cells within the NARX network [20] 

 

In article [22], once again, the parameter δ, analogous to stimuli, embodies variations in 

system components and dynamics caused by changes in the environment or working 

conditions. In the paper, Generalized Quasi-Orthogonal Endocrine Adaptive Neuro-Fuzzy 

Inference System (GQOEANFIS) is designed with the OEANFIS once again as the core 

component. By injecting stimuli-like variations directly into the neurons of the fourth layer, 

the network becomes more adaptable to environmental changes even after the training 

process, enhancing its ability to respond to dynamic conditions while modeling complex 

mechatronic systems. In [22], a significant distinction in the implementation of the artificial 

gland cell is evident compared to the described scenarios in [6][20], where external stimuli 

influence hormone production. In this study, the stimuli directly affect the fourth layer of the 

neural network. 
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In article [19], the authors suggest a design approach for an orthogonal endocrine 

intelligent controller (OEI controller) applicable for the control of nonlinear dynamical 

systems. Artificial glands are incorporated into two conventional soft computing substructures 

(OENN and OEANFIS). These artificial glands serve to stimulate neural network weights in 

response to external disturbances, changes in the environment, or data from various sensors. 

In this research attempt, the OENN network's output forms an online stimulus signal (OLS), 

subsequently introduced to the fourth OEANFIS layer, as an artificially made stimulus. Here, 

the main contribution was made by proposing rhe OENN's output signal ˆ( )y t  which will be 

computed using the following equation: 

 
1

( ) ( ( ) ( ) ( )) ( , , ( ), ( ))ˆ ( )
n

i g j i g j

i
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where i is an orthogonal function and ( , , , )( ) ( )g jtm C S tR X  represents an expansion 

error, which is decreasing when the number of expansion terms m increases. OLS is 

directly introduced to the forth OEANFIS layer, which generates control signal x(t). 

Finally, the limiter is introduced to restrict the control signal in a specified range. 

In the article [23], the authors proposed a new approach to tuning and optimizing the 

sensitivity parameter jS . The adaptation of the parameter relies on mimicking the 

biological mechanisms of excitation and inhibition. Inhibitory signals act as synaptic 

potentials that prevent a neuron from initiating a pulse (action potential), thereby halting 

its transmission through the network. Conversely, excitation serves to trigger a neuron to 

produce a pulse, facilitating the transmission of information across the network by 

engaging other neurons. Using these principles, the input value of each neuron in the 

output layer is calculated in [23] according to the following equation: 
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where 
,( ; , )p a

EX EXS G N  generates the sensitivity of the ath excitatory gland, ,( ; , )p b

IN INS G N  

calculates  the sensitivity of the bth inhibitory gland for the pth output neuron. 
,p a

EXG  

represents the number of excitatory glands influencing pth neuron weights. Similarly, the 

number of inhibitory glands influencing pth neuron weights is labeled as b in 
,p b

ING . 

Finally, Wpi is the output weight, d - the adaptive factor, 
,p a

GEXC  represents the hormone 

concentration of the ath excitatory gland of the pth output layer neuron, and 
,p b

GINC  is the 

hormone concentration of the bth inhibitory gland of the pth output layer neuron. 

As an additional contribution in [23], given that the default output of a single neuron 

is (4), and in order to avoid a possibility of that u could become 0 (for sensitivity Sj equal 

to zero), the equation 4 is transformed in [23] to:  
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Now, when hormone sensitivity Sj is equal to zero in (7), an endocrine neural network 

will function as a traditional network without any gland influence, producing neuron 

output as: 
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Differing from previous papers where each gland was treated as an independent unit, 

in [17], the authors proposed an approach for improving the performance of the endocrine 

neural network by establishing mutual connections between glands, thereby enabling 

comprehensive interactions among them. The role of each gland remains the same as 

described in papers [6] and [19]; however, in this approach, the concentration of hormones 

from one gland will depend on the others. For example, if a gland secretes a large 

concentration of a hormone that is important for other glands, that hormone will have a 

significant impact on them. This relationship is represented by the following equations: 
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where AFi is the interaction coefficient of i-th gland with the value between 0 and 1, and 

ch
 
is the concentration of hormone of h-th gland which is determined by accounting the 

concentrations of other hormones. Based on (8, 9) the cell output can be represented as 

follows: 
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where nx is the number of inputs, ng is the number of glands in the system, while b is the 

threshold of the cell. 

The paper [18] introduces an Artificial Endocrine Neural Network (AES) as a part of the 

Artificial Homeostatic System (EAHS), which is inspired by the self-regulation principles in 

the human organism. AES consists of a module for Hormonal Level (HL), Hormone 

production controller (HPC) and endocrine gland (EG). HL is responsible for remembering 

the level of hormones in the system, the controller has the task of controlling the release of 

hormones based on the environmental conditions and the internal state of the system. The 

controller sends information to the endocrine gland, which is responsible for secreting and 

producing hormones when needed. The hormone production (HPi) of the i-th hormone is 

updated as follows: 
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In (11), ISi represents the internal state, ESi represents the external stimulus and HLi 

represents the hormone level. Further, i  represents the target threshold for the IS, while 

i is the scaling factor. In Eq (12), i is a  threshold associated with ES and i is a 

threshold associated with HL while  represents the gain value for the rate of change on 

the internal state. It is also considered that the variable T represents the half-life variable.  
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In the paper [24], an Artificial Hormone Network (AHN) was introduced to enable the 

robot to respond to changes in the external environment and the internal state of the system. 

This hormone network comprises hormone channels, sensory channels, hormone receptors 

(HR), and hormone glands (HG). A Hormonal Gland (Fig. 2) is tasked with secreting 

hormones whose concentration is influenced by information from the external environment 

and the system's state. 

 
Fig. 2 The hormonal gland mechanism from [24] 

 

There are two types of input signals on each gland: Signal input (Si) and Control input 

(Ci). These signals enter the Signal Pre-processor and Control Feature blocks, respectively. 

The pre-processing block receives the signal input and determines how the gland responds to 

other hormones and external influences, while the Control Feature unit processes the control 

input to define the effect of each signal input on hormone secretion. 

There are two ways to manage hormone secretion: Inhibitory/Stimulatory control and 

Negative/Positive feedback control. The first method allows for preventing or stimulating 

hormone secretion based on the switch principle, depending on the presence of external 

signals or hormones (the presence of a signal is defined by a given threshold). The feedback 

control enables reduced or increased hormone secretion as a fine adjustment. 

The final block is a hormone release mechanism, which identifies the required hormone 

concentration and instructs the gland to secrete the given hormone. The concentration of the 

hormone secreted by the gland at each time step depends on the processed input signal, 

subject to the influence of the stimulation rate (g), and the concentration of the hormone in 

the previous time step, subject to the decay rate (g). Below is the definition of the hormone 

concentration value at time step t: 

 ( ( )) ( 1 )( ) ( )g g i g gC tt F S C = + − , (14) 

where Cg(t) represents the hormone concentration in the time step t, and F(Si) represents the 

output from the Signal Pre-processor block. It is important to note that the values for Cg, g 

and g should be between 0 and 1. 

In [25], a hormone feedback mechanism was proposed to protect the system from 

overflow. The negative feedback cell (Fig. 3) is very similar to an ordinary endocrine 

gland introduced in previous papers. It is affected only by the concentration of the main 

hormone and undergoes determined deterioration according to the established dynamics 

of the gland. Utilizing this mechanism limits the rapid growth of hormone concentration 

and prevents overflow.  
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Fig. 3 An artificial neuroendocrine architecture with negative feedback proposed in [25] 

 

The following equation presents the formula for the concentration of the feedback 

hormone as proposed in [25]: 

 1( ) ( ) ( )f f f f gc t c t c t = − +  (15) 

Authors in [26] based their work on developing Artificial Orthogonal Gland (AOG) 

mechanism. Earlier presented studies focused mostly on acquiring environmental stimuli, 

converting them into suitable input signals, and delivering them to the glands. Subsequently, 

hormone concentrations within each gland were computed based on the stimuli level and 

these calculated values were fed into a neural network to update the values of proper 

network weight coefficients. Each gland in these papers primarily operated independently 

of the other involved glands, responding to distinct environmental stimuli. The authors in 

[26] made a progress in a different direction, proposing a mechanism (Fig. 4) that would 

enable dependent mutual operations of glands and mutual interactions between different 

hormones. The structure is designed to accommodate two types of input signals. The 

Control Input (CI) regulates hormone production, enabling interaction between glands 

and linking hormones within the hormone network. The Signal Input (SI) determines the 

hormone stimulation level within a gland and defines its influence on the neural network. 

As a final remark, it is important to highlight that this mechanism comprises three distinct 

types or substructures – hormonal, signal, and control mechanisms. 

 

Fig. 4 AOG mechanism from [26] 
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Finally, in [27], the authors introduced a simplified hormone decay function derived from 

the Neal/Timmis system. In the original version of the system, the hormone is released and 

decays according to a geometric function as described by the following equations: 
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r x
=

=   (16) 

 )1( ( )g g tC t C + =  (17) 

where rg represents the rate of hormone release, g represents the stimulation rate for 

gland g, xi represents the input to the gland and n is the number of inputs. Cg(t) and 

Cg(t+1) represent the hormone concentration in time step t and the following time step 

t+1, while β is the decay constant. However, the authors decided to simplify this process 

to reduce the number of variables in the system. To achieve this, the hormone decay 

function was redesigned to use a single variable for both release and decay. This means 

that the same variable is used to determine the rate of hormone release as well as the rate 

of hormone decay. In this way, instead of using two separate variables for hormone 

release and decay, only one variable is used, which simplifies the model and reduces the 

number of variables to keep track of. The modified equation for determining hormone 

concentration at time step t+1 is below: 

 )( ) ( )1 ( )(g g gC t C r Ct qt+ = − −  (18) 

where r represents the amount of hormone secreted, and q represents the decay/release 

rate. 

4. RECOMMENDATIONS 

In this section, the findings acquired during the review of endocrine networks in the 

previous part of the paper will be summarized through two perspectives for selecting the 

optimal type of endocrine network. The first perspective focuses on selecting the right 

network in accordance with the principles of addressing environmental stimuli and 

disturbances within the gland mechanisms. The second perspective is based on potential 

use cases and recommendations on how to select a proper network in accordance with the 

experimental setup and specific task. 

4.1. Gland type selection approach 

For control applications requiring adaptive responses to environmental stimuli, the 

OENN and OEANFIS prove effective. These networks demonstrate suitability in handling 

variable conditions and disturbances, showing improved performance after processing 

environmental stimuli. In scenarios where endocrine components need to be integrated into 

traditional neural network structures, the NARX is a good solution. This type of network 

is suitable for modeling dynamic systems with input-output relationships, making it a 

valuable tool in various applications. 

For systems requiring a high-level adaptability to dynamic conditions and changes in 

the environment, the GQOEANFIS is recommended. This mechanism enhances the 

network's response to environmental variations, thereby improving adaptability while 

modeling complex systems. In applications where mutual interactions between glands are 
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desired, the AOG mechanism offers good application potential. This mechanism enables 

dependent mutual operations of glands and interactions between different hormones, 

facilitating comprehensive interactions among mathematical units. These networks are 

effective in scenarios where the concentration of hormones from one gland depends on others, 

enhancing network performance through comprehensive interactions. Finally, for systems 

requiring protection against overflow due to a rapid growth of hormone concentration, the 

Hormone Feedback Mechanism is recommended. This mechanism ensures the stability and 

reliability of the system in volatile conditions. 

4.2. Network selection depending on the use case 

Based on the diverse approaches and implementations of endocrine neural networks 

(ENNs) presented in the previous section, the choice of which type of ENN to use 

depends on the specific technical requirements of the application and the desired behavior 

of the control system. From simpler applications such as ENARX for data analysis 

purposes, to complex hybrid intelligent structures such as OENN-OEANFIS capable of 

performing complex system control, ENNs have proved as competent models for 

resolving a variety of control problems. For example, time-series forecasting has a wide 

range of applications in control systems, especially in the model predictive control since 

it provides useful information about the potential behavior of a variable in the future. 

ENNs specially tailored for time-series forecasting are ENARX, Improved Neuro-

Endocrine Model (INEM) with gland interaction and OENNPP. All of these networks 

have proven to perform time-series forecasting and prediction tasks successfully.  

Beside the ENN application in data analysis and prediction, these structures have 

found their purpose as control components of high applicability in control systems. For 

instance, the structure combining OENN and OEANFIS (OENN-OEANFIS) proved as 

an effective tool to be utilized for online PID controller tuning, providing the means to 

design an adaptive system control, sensitive to the varying environmental stimuli. The 

implementation of this structure is particularly recommended when there is a need to 

reduce the influence of disturbances and improve the control of highly nonlinear systems. 

Concretely, the effectiveness of the OENN-OEANFIS model is proved by successfully 

applying it for 3D crane tracking control. Moreover, the OENN-OEANFIS structure also 

finds its purpose as an intelligent controller itself, not solely as a PID tuner. As the 

control structure, it is especially suitable for nonlinear MIMO systems, such as two rotor 

aerodynamic systems. Another structure suitable to be employed as an intelligent controller in 

dynamical systems is OENN structure combined with Artificial Orthogonal Glands, or OENN 

+ AOG structure. This structure can be successfully applied in the control of complex 

nonlinear systems such as magnetic levitation systems. 

Further, ENN networks can be utilized in system modeling as well. GQOEANFIS, a 

structure carefully developed based on the regular ANFIS model with the aim to solve the 

issues of large computation time and to implement an adaptive mechanism, was designed 

with the main purpose of modeling complex and highly nonlinear mechatronic systems 

such as ABS systems. The strengths of this approach are even more emphasized when 

utilized alongside with a GQOENN model, a structure specialized in predicting the 

modeling error. This structure is highly recommended for nonlinear system modeling and 

as a part of complex control algorithms such as quasi-sliding mode control. 
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Finally, there is a wide range of ENN applications in robotics. For example an 

artificial endocrine controller has demonstrated promise as a means of solving the issue 

of the power management in robotic systems. Also, EAHS proved to be an effective 

structure for behavior coordination in autonomous mobile robots, while AHN network 

can be used to ensure the robot’s high resilience to the changes in the dynamic 

surroundings. AAES-ANN structure can also be applied to incorporate online adaptation 

to faults and disturbance in robotic systems, while ANN-AES is successfully applied to 

enable collaboration in robotic swarm systems. 

5. CONCLUSION  

This survey paper represents an attempt to summarize the main insights, operational 

approaches, and applicability values of ENNs. To the best of the authors' knowledge, this is 

the first attempt to systematize the base of knowledge of ENNs, aiming to provide other 

researchers in this field with a helpful foundation for further work. 

The paper begins by emphasizing the importance of properly addressing environmental 

stimuli and disturbances when working with dynamic control systems, offering various 

insights on overcoming these challenges. Subsequently, attention is directed towards a modern 

approach for efficiently addressing such issues, namely the application of ENNs to adapt 

systems to volatile conditions. Here, the paper provides basic operational principles of ENNs 

and introduces foundational components. 

The third section constitutes the main part of this survey paper, presenting the primary 

variants of ENNs proposed thus far. Special attention has been paid to provide prospects for 

ENN application in robotics. The focus lies on showcasing the operational mechanisms of 

each endocrine structure, the development of artificial glands, and the integration of each 

proposed mechanism into a default ANN environment. Additionally,  an emphasis is placed 

on comparing the analyzed solutions and identifying the differences that characterize them. 

Finally, the fourth section aims to provide recommendations regarding the selection 

process of ENNs based on environmental stimuli and disturbances and/or specific use cases 

for which such networks should be utilized. These recommendations are intended to assist 

researchers in selecting an optimal endocrine structure for their specific research problem in 

the domain of control systems. 
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