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1. INTRODUCTION 

In this century, great progress has been made in the field of orthogonal rational functions, 

orthogonal algebraic and trigonometric polynomials, and orthogonal systems in general. In 

particular, there are a large number of papers dealing with the application of orthogonal 

systems in electronics, circuit theory, digital signal processing and telecommunications. One 

of the most important applications of orthogonal functions is the design of orthogonal filters, 

which can be successfully used for design of orthogonal signal generators, for the modelling 

and identification of dynamical systems, and for the practical implementation of optimal and 

adaptive systems. 

Legendre polynomials and their orthogonal properties were intensively researched at the 

end of the eighteenth century to determine the attraction between the celestial bodies during 

their orbits [1]. Hermite polynomials were invented as a result of solving differential equations 

on infinite and semi-infinite intervals, and development of arbitrary functions on these 

intervals [1]. The theory of continuous fractals gave a strong impetus to the later study of 

orthogonal polynomials by Szegö, and thus the mathematicians of the mid-nineteenth century 

laid the foundation for Laguerre polynomials [2]. All the mentioned types of polynomials 

which are orthogonal on the real axis with respect to the defined weight function have been 

effectively used for the numerical evaluation of the integral value using the quadrature 

formulas since the Gaussian era. In 1807, while solving partial differential equations related to 

the heat conduction, Fourier noticed that the solution can be represented as a series of sine 

functions with exponential weights. He later transferred the same idea to the representation of 

arbitrary function as the final sum of sine and cosine functions. In his researches, Chebyshev 

established that of all the approximation polynomials of an arbitrary function over the interval 

[-1, 1], the best minimization of the maximum error can be achieved with a linear combination 

of certain polynomials, which today are referred to as Chebyshev. Somewhat later, Jacobi and 

Gegenbauer polynomials were developed. A certain class of orthogonal functions, the so-

called part by part constant basis functions, founded application in the identification of 

dynamical systems. These families of functions include Haar and Walsh functions [3]. In 

the first half of the twentieth century, generalised orthonormal rational basis functions were 

studied in separate papers by Takenaka [4] and Malmquist. The applications of these 

functions to the approximation of functions defined on the unit circle (analysis of discrete 

systems) and the semi-plane (continuous systems) were developed by Walsh in the middle 

of the last century. During this period, we can also recognize significant research of Szegö 

and Geronimus [5], [6] on the analysis of polynomials orthogonal in the different domains 

[7], [8], as well as work of Djrbashian on orthogonal rational functions on the unit circle 

with fixed poles [7]. Due to certain special properties, the works on orthogonality on the 

real axis and the unit circle are most numerous [8]. 

Authors of this paper have paid significant attention in recent years to investigating new 

types of orthogonal polynomials and their possible applications in control systems and other 

applications. The main contributions of these researches are new types of orthogonal functions 

and polynomials with the use of several different types of transfer functions for their 

generating [9]-[20]. Based on these functions we obtained new classes of improved almost 

and quasi-orthogonal polynomials as well as practically implemented orthogonal filters in the 

form of printed circuit boards [11], [12]. As some possible application of the newly derived 

almost orthogonal filters can be found in [12], [21]. It should be mentioned that in [11], new 

types of filters based on orthogonal Legendre and Malmquist quasi-orthogonal polynomials 
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have been proposed. For these polynomials, we derived a complete mathematical apparatus in 

terms of the definition of the inner products, calculating the appropriate norms, as well as the 

deriving significant relations (Christoffel and Rodrigues formula). In [16], a new class of 

orthogonal Legendre type filters with complex poles and zeroes were designed with 

application in the modelling of a real industrial system. 

Most of the polynomials and functions mentioned in this paper were used to design 

filters that were practically realised and later used in modelling, identification and control of 

systems. Sometimes it was necessary to adapt the obtained transfer functions to a specific 

filter design. 

The rest of this paper is organised as follows. In Sections 2-5, classes of orthogonal 

polynomials are presented (shifted, almost orthogonal, quasi-orthogonal and finally 

orthogonal polynomials based on symmetric transformations). Appropriate orthogonal filters 

practically designed from these polynomials and functions are described in Section 6. 

Concluding remarks and further work can be found in Section 7. 

2. SHIFTED ORTHOGONAL POLYNOMIALS 

Considered polynomials are orthogonal over certain interval. To allow an analysis over 

arbitrary intervals, we can introduce shifted polynomials [12], [14], [22] which are suitable for 

describing the signal over any considered interval. 

All orthogonal polynomials over a finite range (Legendre, Chebyshev of first and 

second type, Jacobi and Gegenbauer) are defined over the interval [-1, 1]. For the purpose 

of analysing and processing real signals which can have values over arbitrary intervals, 

classical polynomials can be redefined, i.e. shifted to the desired interval [a, b]. Shifted 

orthogonal polynomials {k()}are defined over an arbitrary interval [a, b] and can be 

obtained from regular (unshifted) {k(x)} by substitution x =  *, where: 
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where () = w(*)
 
and k() = k(*), and norms ||k || can be found in [7] for different 

types of polynomials. 

Classical Laguerre polynomials are orthogonal over the interval [0, +∞] with the 

weight function w(x) = e−x, and Hermite over [-∞,+∞] with w(x) = e−x2

. It can be noticed 

that in both cases the following relations are valid: w(0) = 1 and w(x→)→0. That means 

that these weight functions differently sample large and small values of x. So, in order to 

better represent the function f(x), x  [a, b], we have to move (shift) the centre (x = 0) 

into a by substituting x = 
 
−a, so that the new weight function becomes 1 in both cases 
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for 
 
=a. Obtained polynomials are also shifted, but we have to emphasize that described 

shifting of Laguerre and Hermite polynomials has completely different meaning than 

shifting polynomials orthogonal over the finite interval [23]. 

3. ALMOST ORTHOGONAL POLYNOMIALS AND FUNCTIONS 

For simplicity, we now introduce the concept of generalised orthogonal functions 

using the well-known Legendre polynomials for the sake of simplicity (the same concept 

can be used for other classical orthogonal polynomials as well) [13], [15]. Our design is 

based on shifted Legendre polynomials that are orthogonal over the interval (0, 1). On the 

other hand, technical systems operate in real time, so we need the corresponding 

approximation over the interval (0, ∞). The solution is to use the substitution x = e−t. In 

this way, the polynomial sequence orthogonal over (0, 1), becomes an exponential 

polynomial sequence orthogonal over the interval (0, ∞). 

Let us consider the orthogonal Legendre polynomials in their explicit form [12]: 

 
.

0

( )
n

i

n n i

i

P x A x
=

=  , (3) 

where: 

 .

1 ( )!
( 1)

! !

n i

n i

n n i
A

in i

−   +
= −  

 
. (4) 

These polynomials are orthogonal over the interval (0, 1), with the weight function 

w(x) = 1, and the following definition of orthogonality based on the inner product: 
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and they can be successively used for modelling, and control of dynamical systems as 

well as for identification of specific systems parameters. 

Corresponding almost orthogonal polynomials 
( ) ( )nP x

 can be defined as [13], [24]: 
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where ε represent a very small positive constant  (0 <  << 1). The connection between 

classical orthogonal and almost orthogonal polynomials is proved in [12] with the 

following relation: 
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where ||Pk||2 represents the square of the norm and bk are polynomials dependent on ε. 

Obviously, for ε=0 almost orthogonal polynomials become strictly orthogonal, i.e. 
( )

0
lim ( ) ( )n nP x P x

→
= . For design of almost orthogonal filters, it is very convenient to use 

the following three term recurrent relation, derived in [12], [14]: 
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In [13], we defined almost orthogonality in a different manner in order to accomplish 

further simplifications and improvements in filters design. First, we defined almost 

orthogonal Legendre polynomials 
( )

( )nP x
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δ is a constant near to one: δ=1+ε≈1 and Г is a symbol for the gamma function [5], [7]. 

Parameter δ is an uncertain quantity, which describes the imperfection of the system. 

Variations of δ contain cumulative impacts of all imperfect elements, model uncertainties, 

and measurement noise on the system output. The range of variations can be determined 

by conducting several experiments. Hence, it is expected that responses obtained from 

different experiments are mutually different. The responses are in certain boundaries, 

which depend on parameter δ i.e., on the real system components quality, or the noise 

level present in signal. 

After applying the substitution −= tx e to (10) and Laplace transform, we obtain a 

transfer function suitable for designing almost orthogonal filters: 
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As a mapping function use the transformation 0+ =s s , i.e., = −s s . In this case, the 

left semi plane of the complex plane s is being transformed into the right semi plane [21], 

[25]. Almost orthogonality can be analysed from the following inner product: 
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with weight w(s) = 1, m > n. Now, applying the Cauchy theorem, we obtain: 
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The first few members of the improved almost orthogonal polynomials 
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over the interval (0, 1) with weight function w(x)=1 sequence are: 
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4. QUASI-ORTHOGONAL POLYNOMIALS AND FUNCTIONS  

The final generalisation of the concept of orthogonality can be introduced by the 

following definition of quasi-orthogonality for the polynomial set Pn(x) [11], [18], [21]: 
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where k represents the order of quasi-orthogonality, a and b are the limits of quasi-

orthogonality interval, and w(x) is the weight function. In our case of Legendre quasi-

orthogonal polynomials of the first order [11]: 
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In the similar way as in the case of almost orthogonal polynomials we obtain 

orthogonal functions (poles are integer) [11], [21]: 
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or in the following form (shifted and more suitable for filter design): 
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The first few members of quasi-orthogonal polynomials of the order k=1, 
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the interval (0, 1) with the weight function w(x)=x sequence are: 
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and a few second order (k=2) quasi-orthogonal polynomials: 
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If we apply the definition of quasi-orthogonality on almost orthogonal polynomials 

given by the following relation [11], [16]: 

 ( )

,

0

( )
n

i

n n i

i

P x A x 

=

=  , (25) 

 ,

( 1)
( 1)

( 1) !( )!

n i

n i

n i
A

n i n i

 



+  + +
= −

 + −
, (26) 

and Г is a symbol for the gamma function, we obtain quasi-almost orthogonal Legendre 

type, polynomials over the interval (0, 1) with the weight function w(x) = 1: 
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In the previous relation, k is the order of quasi-orthogonality, and δ is a constant, 

defined as δ = 1 + ε ≈ 1 [11], [13], [16]. The range of the parameter δ can be determined 

by conducting several experiments based on the designers’ experience. Polynomials 

defined via (25) and (26) represent generalised quasi-orthogonal polynomials.  
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Now, let us define the quasi-orthogonality over the interval (0, 1) with the weight 

function w(x) = 1 via the inner product in the following manner: 
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In the similar way as in the previous classes of orthogonal polynomials we obtain 

appropriate orthogonal functions: 
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or in the form adjusted for the filter design: 
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A few first order (k = 1) generalised quasi-orthogonal polynomials of this sequence are: 
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and a few second order (k=2) generalised quasi-orthogonal polynomials: 
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5. ORTHOGONAL POLYNOMIALS AND FUNCTIONS  

BASED ON SYMMETRIC TRANSFORMATIONS 

By using Legendre orthogonal functions: 
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Müntz-Legendre polynomials [18], [26], which are orthogonal on the interval (0, 1), were 

obtained by [26], [27]: 
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where the contour Г surrounds all the poles of the integrand. Functions Wn(x) are used for 

designing orthogonal Legendre filters. Müntz–Legendre polynomials are used for 

obtaining outputs from these filters. Let us notice that in these filters the zeroes are 

obtained by linear transformation of the poles. Orthogonal Laguerre functions where the 

zeroes have reciprocal values of the poles: 
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are used for design of orthogonal Laguerre filters [7]. The Takenaka-Malmquist rational 

function system [28]-[30]: 

 

2 1

0

1 ( )
( ) , 0,1,2,

1 (1 )

n
n k

n

kn k

s
W s n

s s

 

 

−

=

− −
= =

− −
  (38) 

is used for designing appropriate orthogonal filters (Takenaka-Malmquist filters), [7], 

[21]. Let us notice that the zeroes of Wn(s) have reciprocal values of the poles. The 

generalisation of Malmquist functions was performed in [31] by using the mapping 

s → b/s: 
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By using these functions and the following relation: 
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a class of orthogonal Müntz polynomials which are orthogonal with respect to the special 

inner product was derived. In this way, generalised Takenaka-Malmquist filters are designed. 

Outputs of these filters are obtained using (40). A new class of Müntz polynomials derived 

from a sequence of orthogonal Malmquist functions, is introduced by [22]. These Müntz 

polynomials are orthogonal with respect to the special inner product. In [31] we have 
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applied them for design of a new class of filters based on reciprocal transformation 

(generalised Malmquist type) (39) which are orthogonal with respect to a new special 

inner product. 

In this paper, the focus is on a more general class of orthogonal rational functions and 

filters, to which the above belong. Namely, the zeroes in the all above mentioned rational 

orthogonal basis functions are obtained either by the linear transformation s → as + b  or 

the reciprocal transformation s → b/cs of the poles. The transfer functions of the 

orthogonal filters are Wn(s), and the outputs are obtained using Müntz polynomials 

derived by (38). A class of orthogonal cascade filters which represents a generalisation of 

all the mentioned filters obtained by using linear and reciprocal mapping poles to zeroes 

is realised by using the symmetric bilinear transformation: 
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For design of orthogonal cascade filters with real poles, with taking into account that 

the bilinear transformation is symmetric, we have: 
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The sequence of the appropriate rational functions has the following form now: 
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If we apply the transformation (41) onto Wn(s) we obtain: 
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Let us consider the inner product: 
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where the contour Г surrounds all the poles of Wn(s). If m n  due to the symmetry of the 

bilinear transformation, all the poles of the integrand (46) that lie inside the contour Г are 
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annulled with appropriate zeroes of 
* ( )mW s , so the contour integral (46) is equal to zero. 

In the case of m = n, there exists one first-order pole inside the contour Г. After applying 

the Cauchy theorem, we can obtain the following expression: 
2( ( ), ( )) 0n m nW s W s N=  . 

Finally, all the expressions stated above imply: 

 2

,( , )n m n n mW W N = , (47) 

where n,m represents Kronecker symbol, and poles k lie inside the contour Г , while all 

the zeroes 
*

k  (43) lie outside the contour Г. Thus, the sequence of the rational functions 

Wn(s) is orthogonal in the complex domain bordered by the contour Г with respect to the 

inner product (43).  

Using the sequence Wn(s) we can obtain a class of orthogonal Müntz polynomials 

based on (40) in the following way [32], [33]: 
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k k

n n
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a b
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=
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 +
− 

− 
=

−





. (48) 

These polynomials can be written as: 

 
,

0

( ) k

n

n n k
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=  , (49) 
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−

=
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 +
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= =
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. (50) 

It is shown that these Müntz polynomials are orthogonal with respect to an inner 

product which is defined below. First, the operation  on monoms x and x is defined in 

the following way [33]: 

 
( )c a b

x x x
    − + −

 = . (51) 

Using this operation, the product of two Müntz polynomials, 
0

( ) k

n

n k

k

P x p x


=

=   and 

0

( ) j

m

m j

j

P x q x


=

=   can be defined in the following manner: 

 
( )

0 0

( ) ( ) k j k j

n m
c a b

n m k j

k j

P x Q x p q x
   − + −

= =

 =  . (52) 

Using this product of Müntz polynomials, a new inner product can be defined as: 

 ( )
1

2

0

( ), ( ) ( ) ( )n m n n

dx
P x P x P x P x

x
=  . (53) 
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Finally, by using (41) and (48) we obtain [33]: 

 ( )
2

, 2

,1 2
2

0

( )
( ), ( )

2 Re

n
n m

n m n n mn

n n
k

k

a bc
P x P x N

c a bc a




 
−

=

+
= =

− −−
. (54) 

Hence, Müntz polynomials (40) derived from orthogonal rational functions Wn(s) are 

orthogonal on the interval (0, 1) with respect to the inner product (18). If rational 

functions Wn(s) have real poles, then Müntz polynomials Pn(x) are with real exponents. In 

that case, substituting tx e−=  into Pn(x), we obtain exponential functions: 

 
,

0

( ) ( ) k

n
tt

n n n k

k

t P e A e
 −−

=

= =  . (55) 

Using (47), (51), (52), and (55) we obtain: 

 ( ) 2

,
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The functions (44) can be written in the form more suitable for a practical filter design: 
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As we have already said, this is a generalisation of a filter based on a simple reciprocal 

transformation a = 0, c = 1, but also of most existing filters by choosing specific values 

for parameters a, b, and c. Hence, filters based on a bilinear transformation are adaptive 

and by adjusting the parameters we can achieve better performances. 

Remark: There are also corresponding classes of digital filters where the basis for the 

realisation are the corresponding transfer functions in the z-domain, but the focus of this 

paper is on the functions in continuous s-domain with real poles and analogue filters. 

This is a new generalised inner product based on the bilinear transformation of poles to 

zeroes. For illustrative purposes, a sequence of polynomials of the first few polynomials for 

the following values of poles 0 1 2 3 42, 3, 4, 5, 6    = − = − = − = − = −  and parameters 

of bilinear transformation a = 1, b = 1, c = 1 are: 
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3 2
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( ) ,
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P x x x
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P x x x x x
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= −
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= − + −

 (59) 
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6. ORTHOGONAL FILTERS DESIGN AND PRACTICAL REALISATIONS 

One of the most important applications of orthogonal functions is the design of orthogonal 

filters [11]-[17]. These filters can be used for signal approximation [14], for the design of 

orthogonal signal generators [12], for modelling and system identification [13], [21], [22], 

[37], [39] as well as for the practical implementation of optimal and adaptive systems [36] 

and control methods [25]. The theory of classical orthogonal filters has been well studied 

and described in numerous papers [7], [11]-[21], [40]. In [25], the design procedures for 

classical, almost quasi-orthogonal filters of Legendre and Müntz-Legendre type are described 

[21]. To successfully design and implement certain types of filters, we need to start from 

the rational functions given in the form (7) and (12) for almost orthogonal, (19) and (20) for 

quasi-orthogonal, (23) for generalisation quasi-orthogonal and, (34) and (39) for orthogonal 

cascade filters based on symmetric transformations. 

Figure 1 shows an almost orthogonal filter of the Legendre type [13], [14] with six sections, 

which was realised in the analogue technique. The transfer function of this filter corresponds to 

the expression (8) in which the poles and zeroes have integer values (i = 1, 2,...,6, n = 5). The 

following components were used for the realisation of this filter: 15 operational amplifiers (µA 

741CN), 60 resistors, 12 potentiometers and 6 electrolytic capacitors. 

Figure 2 presents the realised printed circuit board of the improved almost orthogonal 

filters [13]. The following components were used for the realisation of this filter: 8 operational 

amplifiers (LM 324N), 48 resistors, 9 potentiometers and 8 electrolytic capacitors. 

 

Fig. 1 Almost orthogonal Legendre type filter - printed circuit board 

 

Fig. 2 Improved almost orthogonal Legendre type filter - printed circuit board 
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A laboratory setup for testing our quasi-orthogonal filter is given in Fig. 3 [11], [21]. The 

setup consists of a printed circuit board with the realised first order Legendre quasi-orthogonal 

filter, microprocessor unit and power supply. A practically realised experimental printed 

circuit board for a generalised quasi-orthogonal first-order filter with four sections (n=4) is 

given in Fig. 4 [21]. The following components were used for the realisation of this filter: 7 

operational amplifiers (LM 324N), 55 resistors, 9 potentiometers and 7 electrolytic capacitors. 

 

Fig. 3 Laboratory setup for a first-order Legendre quasi-orthogonal filter 

 

Fig. 4 Generalised Legendre first-order quasi-orthogonal filter - printed circuit board 

Relations (34) and (39) represent transfer functions of the new orthogonal cascade 

filter based on symmetric transformations, and it is a base for its practical realisation (Fig. 

5). The designed filter in Fig. 5 is based on the bilinear transformation which is a 

generalisation of the reciprocal one so the printed circuit board is for both. 
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Fig. 5 An orthogonal filter based on bilinear transformation, a printed circuit board 

7. CONCLUSION AND FUTURE WORK 

In this paper we have made a survey study of new classes of orthogonal polynomials 

(almost, improved almost, quasi-, generalised quasi-, and polynomials obtained by 

symmetric transformations) derived in recent years. These polynomials and functions can 

have a wide range of applications in various scientific and engineering fields (modelling 

[9], [14], [19], [31], identification [21], [39], sensitivity analysis [15], [38], model 

predictive control [41]-[43], control systems theory [18], [21], [34], neural networks [17], 

[18], [35], [37], [38], fuzzy systems [21], ANFIS [21], [36], DPCM system [20], [31] 

etc.) [19], [20]. Some of the systems and devices where these orthogonal functions and 

filters have found application are modular DC servo drive [14], [36], [42], [43], magnetic 

levitation system [17], two rotor aero-dynamical system (TRAS) [37], tower crane [38], multi 

tank system [15], [39], [41], protector cooling system [9], [19], [31], anti-lock braking system 

(ABS) [18], differential pulse-code modulation (DPCM) system [20], [31]. 

The aim is to synthesize all these polynomials and functions that are important to us 

in some way and compare them using certain measures of quality evaluation. Of course, 

the further development and generalisation of already existing functions and filters, especially 

the discrete ones, which have been talked about the least here, and the continuation of their 

application in various fields is also planned. 
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