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Abstract. This paper present research focused on the prediction of the friction coefficient of 

shoe sole rubber by utilizing its measured hysteresis values, along with other influencing 

factors such as hardness, tile surface roughness, sliding speed, and surface conditions. 

Previous authors research determined that rubber hysteresis is an important property of 

rubber (among other mechanical and physical properties) to consider when performing 

tribological research of contact between rubber soles and a hard substrate (tiles, 

laminate, vinyl, concrete). Data required for design and training of a neural network were 

gathered by friction coefficient testing conducted on a specially designed test apparatus. 

Additionally, rubber hysteresis data were obtained using a uniaxial tensile testing machine. 

Given the role of rubber hysteresis in determining its properties, this study identifies it as a 

parameter that influences the friction coefficient and aids friction coefficient prediction 

through artificial neural networks (ANN). The research results showed a high correlation 

between the friction coefficient values predicted by ANN and actual experimental results, 

confirming that designed ANN can be used to predict the values of friction coefficient when 

the rubber hysteresis value is known. 
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  1. INTRODUCTION 

Neural networks, inspired by biological neural systems, represent one of the most 

significant approaches in the field of artificial intelligence (AI). These networks have become 

a fundamental tool for solving complex problems in various domains, such as pattern 

recognition, natural language processing, and predictive analytics [1, 2]. Among other things, 

they are also used for predicting the friction coefficient based on various parameters. Chen et 

al [3] uses GA-BP neural network for friction prediction in bearing surface friction coefficient 

in bolted joints. They collect data for the friction coefficient and then use it for training the 

neural network. Zhang et al work [4] is interesting as it discusses the prediction of the friction 

coefficient between a car tire and asphalt. They use Mind Evolutionary Algorithm optimized 

Back-Propagation (MEA-BP) neural network model for the prediction of the tire-road friction 

coefficient and compare with the extreme learning machine (ELM) and BP neural network 

algorithms. Another work with similar research uses the Elman neural network for 

identification of the road friction coefficient [5]. In that paper, an identification method of road 

friction coefficient based on the Elman neural network was proposed. 

Another study that deals with Artificial Neural Networks (ANN) to optimize time and cost 

in developing new friction brake systems, is a study which employed a Gate Recurrent Unit 

(GRU) algorithm enhanced by an improved Particle Swarm Optimization (PSO) method for 

predicting the coefficient of friction (COF) in braking applications [6]. 

In article [7], a genetic-algorithm-improved neural network (GAI-NN) was developed. 

Tree-dimensional (3D) point-cloud data of an asphalt pavement surface was obtained using a 

smart sensor (Gocator 3110). The friction coefficient of the pavement was then obtained using 

a pendulum friction tester.  

Authors [8] make prediction models of the friction coefficient of asphalt pavement 

considering traffic volume and road surface characteristics. They use different pavement and 

tire parameters to make a model for friction coefficient prediction. 

Also, authors [9] explore the prediction of the friction coefficient using 3D texture 

parameters of pavement surfaces by ANN. 

Paper [10] presents a trained novel predictive model developed for the measurement of 

road surface friction considering a big dataset of 18 months with daily records through novel 

intelligent road-based passive sensor measurement, on a Spanish highway section. The trained 

predictive model is developed on the machine learning (ML) approaches, namely support 

vector machine (SVM), and validated with the K-Fold cross-validation (CV) algorithm 

considering various kernels. 

Authors [11] develop a model that classifies footwear outsoles based on how slip resistant 

they are on icy surfaces. They applied a transfer learning technique where the best 

classification model used the DenseNet169 pre-trained model and obtained an accuracy and 

F1-score of 0.93 ± 0.01 and 0.73 ± 0.03, respectively. 

In previous research, most authors have focused on the influence of rubber hardness on its 

tribological characteristics, neglecting its hysteresis properties, even though the hysteresis 

component is part of the friction mechanism in viscoelastic bodies. Authors who have studied 

the influence of hysteresis have concentrated on determining the contribution of the hysteresis 

component under different tribological conditions, without determining the actual hysteresis 

value as a property of rubber or its impact on the coefficient of friction. For the reasons noted 

above, the subject of scientific research in this paper is the predicting the friction coefficient of 

shoe sole rubber by utilizing its measured hysteresis values along with other factors such as 
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hardness, tile surface roughness, sliding speed, and surface conditions. The study employs an 

artificial neural network (ANN) to analyze data gathered from friction coefficient testing and 

rubber hysteresis measurements. The new approach in this research is the use of hysteresis as 

a parameter for predicting the friction coefficient of shoe sole rubber, which has not been 

previously utilized for this purpose. 

2. EXPERIMENTS 

Gathering data and performing experiments for this study took two months. A total of 240 

data points for the friction coefficient were obtained. The dataset used for the artificial neural 

network to predict the friction coefficient based on rubber hysteresis included the following 

parameters: static and kinetic friction coefficients, rubber hysteresis, rubber hardness, 

substrate roughness, sliding speed, and surface condition (categorized as dry, wet, or soap-

lubricated). Friction coefficient was measured on the testing device developed on Mechanical 

Faculty in Niš.  

 

 
(a) 

 

 
(b) 

Fig. 1 Tribometer (a) and (b) 

Figure 1(a) illustrates the friction coefficient testing device. This device was designed 

to support a wide range of speeds, accommodate various surface conditions (dry, wet, or 

lubricated), test different materials (rubber, tiles, metals…), and perform tests at a constant 
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speed. Figure 1(b) shows a modified version of the testing device, equipped with the 

capability to adjust the normal force.  

The device includes a holder for rubber sliders, which acts as a weight to define the 

normal force, a force sensor, an electric linear actuator with a servo drive, and a base for 

placing different floor samples. The testing setup and some parameters (speed, stroke, 

normal force, slider dimension and arrangement) are based on the EN 13893:2011 [12] 

standard method for measuring the coefficient of friction. Also, the tests are conducted on 

high-hardness granite tiles to eliminate the influence of the substrate hardness on the 

value of the coefficient of friction at the footwear-floor contact. Surface condition (dry, 

wet, soap) were selected from previous similar researches. 

The electric actuator (SMC) uses a ball screw mechanism and features a linearly 

integrated AC servo motor (Mitsubishi). For testing, the normal force was set to 100 N, 

resulting in a contact pressure of 83 kPa. The sliding speeds were 50 mm/s and 300 mm/s 

for kinetic friction and 1 mm/s for static friction tests, with a total travel distance of 600 

mm for measuring the friction coefficient. Friction force measurements were taken using 

an HBM S2 sensor, capable of handling forces up to 200 N. 

 

Fig. 2 Hysteresis testing 

 

The samples for determining the hysteresis of the rubber are cylindrical shape, with a 

diameter of Φ35.7 mm and a height of 18 mm (shown on Fig. 3) 

 

Fig. 3 Hysteresis rubber samples 

The hysteresis testing of the rubber samples, shown in Figure 2, was conducted at the 

Faculty of Mechanical Engineering in Niš using a Shimadzu AGS-X uniaxial testing machine 

with a maximum load of 10 kN.  



 Prediction of the Friction Coefficient Based on the Hysteresis Value of Shoe Sole Rubber 127 

Hysteresis refers to the property of a material to expand and contract in the same manner, 

following an identical path during expansion and contraction on a force-displacement graph. 

This behavior is commonly observed in rubber and similar polymers. For instance, car tires 

heat up not due to friction but because of hysteresis in the rubber, as the tires deform 

momentarily upon contact with the road surface. This energy loss, which converts kinetic 

energy into heat, is described as the rolling resistance [13]. 

Rubber hysteresis plays a crucial role in determining the friction and energy absorption of 

shoe soles. It can be classified into thestatic hysteresis (examined in this study) and the 

dynamic hysteresis, such as Yearsley Hysteresis. The results obtained through this method 

closely align with those from the Yearsley method, showing a minimal result variance. This 

simpler method does not require specialized equipment and uses a uniaxial testing machine. 

For the experiment, rubber compounds with hardness levels of 65 ShA (Method A) and 60 

ShA were tested. Samples were cylindrical with a diameter of 35.7 mm and a height of 18 

mm, produced by a local shoe sole manufacturer (Figure 3). The internal labels for these 

samples included OB202, OB290, OB2280, and OB221, among others. 

Before testing, the rubber samples were conditioned at the testing temperature for at least 

24 hours to stabilize the polymer chains. Once conditioned, their dimensions were verified. To 

increase the friction coefficient between the machine plates and the rubber sample, the 

samples were placed between two sheets of sandpaper. The applied axial pressure caused the 

cylindrical rubber samples to deform, pushing outward into a barrel-like shape. 

For accurate rubber hysteresis testing, the samples underwent a conditioning process, 

which aimed to break weak bonds formed during vulcanization, stabilizing the rubber. The 

conditioning involved five cycles of applying vertical pressure at 0.25 mm/s until 9 mm of 

deformation (half the sample's height), followed by a 20-second hold and then a release at the 

same speed. This process was repeated for all samples, with three test samples per rubber 

mixture. 

After conditioning, the samples rested for 30 minutes. The hysteresis test itself applied a 

vertical pressure force at 5 mm/min until 9 mm of deformation was reached and then released 

at the same speed. Force and deformation data were collected during the test to analyze the 

mechanical response of the samples. 

3. ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF COEFFICIENT OF FRICTION 

For predicting the friction coefficient, a standard artificial neural network with 

backpropagation was used. The ANN was designed to have four layers: an input layer, 

two hidden layers, and an output layer. The variables used in the input layer of the 

network are the kinetic friction coefficient, hysteresis, hardness, substrate roughness, 

sliding speed, and surface condition. The variable in the output layer of the network is the 

kinetic friction coefficient. 

The ANN was created using the MATLAB software tool. The input layer of the artificial 

neural network consists of 5 neurons because there are 5 input parameters, while the output 

layer has 1 neuron, output is 1 dependent variable (friction coefficient). The hidden layer 

consists of 10 neurons. The scheme of ANN is shown on figure 4. 
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Fig. 4 Scheme of ANN 

An artificial neural network was trained using the Levenberg-Marquardt backpropagation 

algorithm. The mean squared error was used to measure performance. The dataset consisted 

of 5 variables. Trial-and-error approach was used for determining the number of hidden 

layers and hidden neurons in these layers. 

Table 1 presents input parameters for ANN, there are 5 input parameters: rubber 

hysteresis, rubber hardness, tile roughness (Ra), sliding speed and surface condition.  

Table 1 Experimental inputs 

No 
Rubber 

hysteresis 

Rubber 

hardness 

(ShA) 

Granite tile 

roughness 

(µm) 

Speed 

(mm/s) 

 

Surface 

condition 

Normal 

load 

(N) 

Measuring 

distance 

(mm) 

1. 0,24 65 0.03   50 Dry 100 300 

2. 0,35 65 4.70 300 Wet   

3. 0,39 65   Soap   

4. 0,46 60      

For measuring network generalization, a validation sample of 60 data was used. When 

generalization stopped improving, network training was halted. During the ANN training 

process, although a larger number of iterations were expected, it was observed that fewer 

iterations were sufficient to train ANN (Fig. 5). 

To evaluate the network's performance, the coefficient correlation R was used, with the 

results presented in Fig. 6. This coefficient indicates how effectively the network was 

trained by comparing the predicted "outputs" to the actual "targets." A higher R value 

signifies a better network performance, with R=1 representing a perfect match between 

"targets" and "outputs." As shown in Fig. 6, the correlation coefficient during ANN training 

was R=0.99877, indicating excellent training. The trained network was then tested on a 
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separate testing dataset, achieving R=0.99854. The overall performance of the trained ANN 

was R=0.99792, which is considered a highly satisfactory result. 

 
 

Fig. 5 Mean squared error during the ANN training process for kinetic friction coefficient 

prediction 

 

 
 

Fig. 6 The results of network performance for training, validation and test dataset (kinetic 

friction) 
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4. RESULTS AND DISCUSSION 

It was determined by previous authors research [14] that the regression analysis 

cannot predict friction coefficient value well enough to agree with the experimental data. 

The difference between prediction of friction coefficient values and actual experimental 

results occurred because regression assumes a linear relationship, which obviously does 

not apply to rubber friction on ceramic tiles with different surface conditions. Additional 

methods, such as Taguchi method, yield better results [14], but again there is still discrepancy 

between the prediction values of friction coefficient and actual experimental data. As ANN 

have proven themselves as a valuable tool for prediction the friction coefficient values, this 

study focused on design and training of ANN to predict the friction coefficient value based on 

the following parameters: rubber hysteresis and hardness, surface roughness and condition 

(dry, wet, soapy) and sliding speed. 

Table 2 shows the experimentally determined and predicted values of the kinetic 

coefficients of friction based on 5 input parameters and 3 sets of measurements used to 

train the network. The total number of measurements of kinetic friction coefficient used 

to train the network is 180 and 60 for confirmation. 

Table 2 Predicted end measured kinetic friction coefficients 

Hysteresis 
Hardness 

(ShA) 

Roughness 

(Ra-µm) 

Speed 

(mm/s) 
Surface condition 

Measured 

µkp 

Predicted 

µk 

Deviation 

% 

0.35 65 0.03 50 1 dry 1.72 1.73 0.75 

0.35 65 0.03 300 1 dry 1.82 1.85 1.80 

0.35 65 4.51 50 1 dry 0.57 0.84 47.96 

0.35 65 4.51 300 1 dry 0.67 0.73 9.27 

0.35 65 0.03 50 2 wet 0.33 0.33 0 

0.35 65 0.03 300 2 wet 0.17 0.26 54.11 

0.35 65 4.51 50 2 wet 0.66 0.82 23.94 

0.35 65 4.51 300 2 wet 0.60 0.59 1.86 

0.35 65 0.03 300 3 soap 0.16 0.23 43.83 

0.35 65 4.51 50 3 soap 0.53 0.58 8.65 

0.35 65 4.51 300 3 wet 0.46 0.60 31.82 

Figure 7 shows a diagram with the predicted and measured kinetic COF. Some of the 

predicted values are almost identical with the measured ones, with a maximal error of 

54%. The difference between prediction and actual experimental data is the largest for the 

higher sliding speed indicating that more experimental data are necessary at speeds 

between 50 and 300 mm/s to enable more accurate prediction at larger speeds. 

Since the predicted results obtained by the neural network are satisfactory, it can be 

concluded that the neural network can be used to predict the friction coefficient. Comparing 

the values obtained by ANN and other statistic methods (regression and Taguchi) [14] it can 

be seen that ANN gives a better accuracy, as the correlation coefficient is much higher for 

ANN in comparison to regression and Taguchi method. 

ANN should perform better with more experimental data used in a training set [15] 

and deviation from predicted and experimental results should be smaller. For further 

research and improvement of the neural network's prediction accuracy, a larger number 

of experiments should be conducted to increase the amount of input data for training the 

network. 
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Fig. 7 Predicted vs measured friction coefficient diagram 

 

Forecasting using neural networks essentially involves processing a specific dataset, 

training a model, and expecting the network to perform well in predicting the output. 

However, during the learning process, the network is typically trained on a limited dataset 

comprising both training and test data, which may not encompass the full diversity of inputs 

and scenarios encountered by the neural network in a real-world environment [9].  

5. CONCLUSION  

This paper describes an attempt to predict the friction coefficient using a neural 

network based on five input parameters, one of which is hysteresis, a factor not previously 

used for this purpose in the existing research. This research confirmed that rubber hysteresis 

is an important property of rubber (among other mechanical and physical properties) to 

consider when performing the tribological research of contact between rubber soles and a 

hard substrate (tiles, laminate, vinyl, concrete). Experimental research showed that different 

rubber mixtures with the same or similar hardness have different COF due to different 

hysteresis. The results obtained in this study show that the prediction of the friction coefficient 

can be accurate and with certain improvements and optimizations could be even better. It is 

necessary to collect more experimental data for better and precise ANN friction coefficient 

prediction. The created ANN showed a high correlation between the target data and the data 

gathered from the simulation of the artificial neural network. Further research should focus on 

increasing the training data through additional experimental measures and neural network 

optimizations. 
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