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Abstract. This paper presents a comprehensive data acquisition platform designed for 

the intelligent management of District Heating Systems (DHS), aiming to optimize 

energy efficiency, reduce environmental impact, and minimize heat loss. A DHS is a 

centralized network that transfers thermal energy to multiple buildings via an insulated 

pipeline infrastructure. Traditional DHS configurations rely on PLCs and SCADA for 

data collection and heating control, but integrating real-time monitoring and advanced 

decision-making capabilities can significantly enhance system efficiency. Our Data 

Acquisition Platform aggregates data from diverse sources, including IoT sensors, 

weather stations, and smart meters, into a unified database for time-series analysis. 

The platform supports automated data retrieval through cron job scheduling and 

integrates with SCADA systems for remote data collection and monitoring. It is integral 

part of an intelligent DHS control approach named XAI4HEAT. This approach 

leverages explainable artificial intelligence algorithms and model-based predictive 

control to dynamically adjust heat supply based on demand and weather forecasts. Key 

benefits of this approach include improved load balancing, optimized energy 

distribution, and the potential integration of alternative energy sources. 
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1. INTRODUCTION 

A District Heating System (DHS) generates and distributes thermal energy to multiple 

buildings via a network of insulated pipes. Heat is produced at a central heating plant, 

typically using fuel-burning boilers, and transported through supply lines to substations 

(Fig. 1). The primary heat distribution network consists of supply and return lines that 

carry hot and cool fluid, respectively, between the central plant and substations. At the 

substations, heat exchangers transfer energy from the primary to the secondary network 

while keeping fluids separate. The secondary network, which consists of smaller pipes, 

delivers thermal energy from the substations to end-users, such as residential apartments. 

 

 

Fig. 1 Overall architecture of a DHS with multiple substations and a single heating plant 

The Data Acquisition Platform presented in this work supports research in the 

intelligent control of district heating systems, with a focus on the heat demand response 

and load shifting to optimize the system performance through the improved heat demand 

forecasting [1]. Additionally, it could serve as a valuable resource of information for the 

development of explainable AI models and tools, enabling the generation of interpretable 

insights from data and offering explanations for variations in heat fluid supply [2]. The 

following sections of the paper provide a detailed description of the proposed platform. 

Section 2 provides a brief review of the related work relevant to the paper. Section 3 presents 

the architecture of the proposed data acquisition platform, while Section 4 discusses the design 

and functionality of the software components within the data acquisition platform. 
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2. RELATED WORK 

In the paper [3] the optimization of the district heating and cooling operation plant 

using distributed and scalable optimization algorithms is proposed. This plant is subject 

to technical limitations and uncertainties in energy demand, which makes it a perfect 

subject for optimizing operations using forecasting tools. Paper [4] presents comprehensive 

surveys that explore how artificial intelligence could be applied to detect and diagnose faults 

in district heating systems, highlighting key research gaps and challenges. A case study on 

using the load forecasting and predictive models to sequence equipment to reduce energy use 

in a heating and cooling plant with four boilers and five chillers, was conducted in paper [5]. 

In paper [6] the application of artificial intelligence techniques to forecast short-term future 

heating demand in a district heating system, focusing on deep learning models is investigated. 

Study [7] compares predictive control strategies tested at two demonstration sites, 

focusing on energy demand forecasting and optimizing system performance in real-world 

conditions. Evaluation of the STORM controller is presented in paper [8]. It uses predictive 

algorithms to manage energy peaks and improve efficiency in district heating systems 

demonstrated into operational networks: in Heerlen (The Netherlands) and Rottne (Sweden). 

Paper [9] discusses AI-driven predictive control strategies used in commercial and 

institutional buildings for improving energy performance. It uses the Model Predictive Control 

algorithm for the reduction of natural gas consumption. Paper [10] focuses on minimizing 

primary energy consumption using the predictive control integrated with thermal energy 

storage in solar district heating systems. Study [11] develops data-driven control strategies 

for improving the efficiency of cooling systems within commercial and institutional buildings. 

Three control strategies were investigated: (a) chiller sequencing, (b) free cooling, and (c) air 

temperature reset supply. In paper [12] the development of a user-friendly weather forecast 

tool designed to support predictive control addressing the challenge of integrating accurate 

weather predictions is presented. Paper [13] presents the development and testing of a smart 

demand response control system for a real-time optimization of district heating network 

temperature levels, focusing on both return and supply pipe temperatures. Paper [14] explores 

a multi-model approach utilizing machine learning techniques to develop control-oriented 

models for optimizing the operation of electric and natural gas boilers in a Canadian 

institutional building, aiming to reduce greenhouse gas emissions while maintaining comfort. 

Reference [15] is a study that investigates the use of artificial intelligence in heating and 

cooling energy station control systems, emphasizing how it may improve energy 

management, lower consumption, and increase occupant thermal comfort. Study [16] 

looks at how to install an AI-based heating system in energy stations and shows how well it 

works to lower energy use, increase management effectiveness, and improve thermal comfort 

for occupants while encouraging wise energy conservation. By incorporating a specialist 

control expertise, paper [17] introduces an intelligent control system with a fuzzy logic-based 

control module for district heating plants, improving automated control, equipment longevity, 

and lowering manual interventions. Compared to existing reinforcement learning techniques, 

reference [18] explains an intelligent control strategy for district heating systems with use of a 

deep reinforcement learning-based algorithm, resulting in the improved precision, stable 

control, and greater rewards. In [19], authors presented an artificial neural network model 

trained to forecast the hourly electricity consumption of energy in industry for a day-

ahead. Input vector impact on short-term heat load prediction of small district heating 

system was analyzed in [20] 
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In our previous work [21], we introduced the fundamental concepts of a data acquisition 

system, while this paper provides a detailed and comprehensive analysis of all components of 

the proposed Data Acquisition Platform. 

3. ARCHITECTURE OF THE PROPOSED DATA ACQUISITION PLATFORM 

Intelligent management of DHS involves the systematic acquisition, processing, and 

application of data to optimize the production, distribution, and consumption of thermal 

energy within a specified district. The primary objective of the proposed Data 

Acquisition Platform is to collect all relevant data that enhances the energy efficiency 

and minimizes heat losses by adjusting the heat supply in response to a real-time 

demand. This approach aids in balancing the heating load across various stakeholders, 

thereby improving the overall efficiency of the system.  

 

Fig. 2 The proposed architecture of Data Acquisition Platform of a DHS 

The integration of heterogeneous data from diverse sources and external systems presents 

substantial technical challenges. A fundamental component of any advanced DHS is the Data 

Acquistion Platform, which consolidates data from multiple sources into a cohesive 

repository. This repository serves as the foundation for subsequent analytical, 

visualization, and alerting processes. To implement this integration, we have developed a 

real-time data ingestion and processing pipeline capable of efficiently assimilating data 

from external Internet of Things (IoT) devices and subsystems. The data is stored into a 

centralized PostgreSQL database, enabling explainable intelligent analyses and facilitating 

the effective handling and transformation of large data volumes. 

In Fig. 2, the overall architecture of the proposed Data Acquisition Platform is 

illustrated. The flow of hot water or steam from the heating plant (1) is monitored to 
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regulate heat delivery. Key components include sensors that collect data on temperature, 

pressure, flow rates, energy consumption, and heat losses from various points within the 

District Heating System (DHS). Additionally, a SCADA system (2) manages and processes 

the data obtained from these sensors, providing a centralized platform for operators to 

continuously monitor the heating system's performance. The collected data is transferred to 

the main database which is an integral part of the central Data Acquisition Platform (3). 

Simultaneously, the Davis Vantage Pro2 weather station (4) gathers environmental 

data through sensors, including an anemometer, temperature sensor, humidity sensor, and 

rain gauge. This data is displayed on the Vantage Pro2 weather station console (5). The 

station is connected to the internet via the WeatherLink Live base unit, which uploads 

real-time weather data to the WeatherLink platform (6). Data from both the weather 

station console and the WeatherLink platform is then transmitted to the central 

PostgreSQL database with the Timescale extension for time-series data analyses. 

Furthermore, smart meters, specifically Air Quality Monitors (7), measure temperature, 

humidity, CO2 levels, and emissions of HCHO and total volatile organic compounds 

(TVOCs) for individual users in residential settings. These measurements are transmitted to a 

public IoT cloud platform server (8) and the main database. Both the WeatherLink platform 

and the IoT platform serve as backups for storing data in the cloud. The platform's data 

visualization GUI is built with Streamlit web framework (9), that allows to visualize time-

series data from the PostgreSQL database by plotting parameters like temperature and 

humidity against timestamps. 

4. DESIGN AND FUNCTIONALITY OF SOFTWARE COMPONENTS  

IN THE DATA ACQUISITION PLATFORM 

The core of the Data Acquisition Platform software is implemented as a robust central 

service that operates on a 15-minute schedule, managed through a cron job. This 

scheduling mechanism ensures the systematic and timely retrieval of data from multiple 

external sources, enabling the platform to maintain an up-to-date repository of critical 

information. 

4.1. Data Sources  

The primary service has been carefully designed to integrate with a variety of external 

data sources, each of which provides unique and essential inputs for the platform's 

operation: 

▪ Meteorological Data: Real-time data from weather stations located in the proximity 

to the DHS is integrated using a REST API provided by Weatherlink 

(https://api.weatherlink.com/v2). This data includes temperature, humidity, wind 

speed, and other atmospheric variables essential for optimizing the DHS performance 

and forecasting energy demand. 

▪ SCADA Data: Operational data from the DHS is accessed directly through a SQL 

database. A dedicated SQL view has been created to streamline data export and ensure 

efficient querying. This integration provides vital insights into the system performance, 

operational metrics, and real-time control parameters, forming the backbone of system 

analytics and decision-making. 

https://api.weatherlink.com/v2
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▪ Indoor Air Quality Data: Temperature and humidity data from residential units is 

obtained through an IoT platform connected to sensors installed within the units. The 

platform leverages a REST API from two sources: https://thermionyx.com/ and 

https://openapi.tuyaeu.com/, to provide valuable data for assessing indoor comfort 

levels and optimizing heating delivery to individual units. 

▪ Weather Forecast Data: Additional weather forecasting data is retrieved from the 

https://api.met.no/weatherapi/ using REST API calls. This data includes short-term and 

long-term weather predictions, which are critical for anticipating energy demand 

fluctuations and adjusting system operations proactively. 

Data from SCADA system is retrieved through direct queries to an SQL database. 

This process allows for the efficient extraction of data, which is essential for the 

monitoring and optimization of system. An example SQL query for retrieving data from 

the SCADA system is given below: 

 
SELECT rpIstorijatTagova.DatumVremePromene, 

    CASE WHEN kpTagovi.TipPodataka = 1 AND rpIstorijatTagova.Vrednost > 32768 

        THEN (rpIstorijatTagova.Vrednost - 65535)/POWER(10.0, kpTagovi.DecimalnaTacka) 

        ELSE rpIstorijatTagova.Vrednost/POWER(10.0, kpTagovi.DecimalnaTacka) 

    END AS Vrednost, 

    rpIstorijatTagova.Stanje, 

    kpTagovi.*, 

    kpUredjaji.Naziv AS Lokacija 

FROM rpIstorijatTagova 

JOIN kpTagovi ON rpIstorijatTagova.IdTaga = kpTagovi.IdTaga 

JOIN kpUredjaji ON kpTagovi.IdUredjaja = kpUredjaji.IdUredjaja 

WHERE kpUredjaji.Naziv IN ('TPS Lamela L4', 'TPS Lamela L8', 'TPS Lamela L12', 'TPS Lamela 

L17', 'TPS Lamela L22') AND DATEDIFF(day, DatumVremePromene, GETDATE()) <= 3000 

ORDER BY DatumVremePromene DESC 

An example of an HTTP response in the JSON format, obtained from the 

WeatherLink REST API, is shown below. This response includes detailed meteorological 

data, with each field representing a specific weather parameter and its corresponding 

value, along with timestamps indicating when the data was recorded. By parsing this 

JSON response, the platform can integrate real-time weather information. 

 
API Response: { 

    "station_id": 194332, 

    "station_id_uuid": "99608905-d0a6-4bbf-9ddb-8eab4b6c827e", 

    "sensors": [ 

        { 

            "lsid": 766119, 

            "sensor_type": 51, 

            "data_structure_type": 2, 

            "data": [ 

                { 

                    "ts": 1725526822, 

                    "tz_offset": 7200, 

                    "bar_trend": -20, 

                    "bar": 29.881, 

                    "temp_in": 85.9, 

                    "hum_in": 37, 

https://thermionyx.com/
https://openapi.tuyaeu.com/
https://api.met.no/weatherapi/
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                    "temp_out": 84.8, 

                    "wind_speed": 3, 

                    "wind_speed_10_min_avg": 2, 

                    "wind_dir": 15, 

                    "hum_out": 40, 

                    "rain_rate_mm": 0, 

                    "uv": null, 

                    "solar_rad": 610, 

                    "rain_storm_mm": 0, 

                    "rain_storm_start_date": null, 

                    "rain_day_mm": 0, 

                    "rain_month_mm": 0, 

                    "rain_year_mm": 192.8, 

                    "et_day": 0.034, 

                    "et_month": 0.004, 

                    "et_year": 2.801, 

                    "forecast_rule": 45, 

                    "forecast_desc": "Increasing clouds with little temp change.", 

                    "dew_point": 58, 

                    "heat_index": 84, 

                    "wind_chill": 85, 

                    "wind_gust_10_min": 6 

                } 

            ] 

        } 

    ], 

    "generated_at": 1725527186 

} 

 

All the previously retrieved and parsed data is stored in a structured relational PostgreSQL 

database, which enhances the capacity for conducting comprehensive and explainable 

analyses. As a result, it delivers a significant value across diverse fields, spanning from 

research to industry. 

The modular and API-driven architecture of the Data Collection Platform enables it to 

handle diverse data types and formats, ensuring compatibility with external systems while 

maintaining scalability and reliability. This design not only supports current integration 

needs but also facilitates future extensions, such as incorporating additional data sources 

or enhancing data processing capabilities. 

4.2. Software Components Description 

The accompanying class diagram illustrates the architecture of the data acquistion 

software. The Main class serves as the entry point of the application. It contains the 

run_loaders() method, which orchestrates the execution of different data loaders. The 

Loader interface defines a contract for all data loaders with the run() method. This design 

ensures that every loader implements the necessary functionality for data retrieval and 

processing. Subclasses of the Loader interface include: 

▪ SCADALoader: Responsible for retrieving SCADA data via SQL database queries. 

▪ WeatherLinkLoader: Handles the integration of meteorological data from the 

WeatherLink REST API. 
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▪ ThermionyxLoader: Focuses on the integration of Thermionyx sensor data via its API. 

▪ TuyaLoader: Manages the retrieval of indoor climate data using the Tuya IoT 

platform. 

Each Loader has a dependency on a Database instance (destination), enabling data 

storage after retrieval and processing. The SCADALoader subclass maintains another 

reference to a Database instance (source), that defines where the data is ingested from. 

The Main class maintains a collection of Loader instances (loaders) and sequentially 

executes them through the run_loaders() method. 

The Database interface outlines a contract for database interaction. It includes methods for 

connecting (connect()), executing batch queries (execute_many(query, values)), and closing 

the connection (close()). Two implementations of the Database interface are provided: 

▪ SQLServerDatabase: Supports integration with Microsoft SQL Server, facilitating 

SCADA data retrieval. 

▪ PostgresDatabase: Represents the PostgreSQL database (with TimescaleDB 

extension) used for storing and analyzing collected data. 

 

Fig. 3 Class diagram of the implemented software platform 

This modular and interface-driven design ensures the high cohesion and loose coupling, 

making the platform extensible and maintainable. For instance, additional loaders or database 

implementations can be added with minimal changes to the existing system. The use of 

interfaces also promotes the use of dependency injection, enhancing testability and 

scalability of the system. 

4.3. Data Visualization 

The data visualization module of the platform includes a simple yet intuitive graphical 

user interface (GUI), developed using the Streamlit web framework [22]. The GUI allows 

users to visualize the time-series data stored in the PostgreSQL database with TimescaleDB, 

by plotting the data for different parameters (e.g., temperature, humidity) against their 
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corresponding timestamps. Each graph represents a single data type and can display 

multiple plot lines, distinguishing data from various locations. The GUI also displays system 

logs, enabling users to identify and diagnose errors or issues within the data gathering system. 

This GUI enhances the usability of the platform by providing clear and interactive data 

visualizations of the gathered data. 

 

 
 

 
 

Fig. 4 Preview of the web-based GUI of the presented data acquisition platform 
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5. CONCLUSION  

Intelligent control systems are integral to forecasting future heat demand by leveraging 

weather data, occupancy trends, and user behavior, utilizing both historical and real-time 

information. These systems employ modern artificial intelligence frameworks to predict 

demand and adjust heat production accordingly. Real-time system adaptation enables rapid 

responses to external factors, such as weather fluctuations or variations in demand, thereby 

optimizing the heating process. By forecasting periods of high demand, these systems can 

proactively adjust heat production, alleviating strain during peak times. AI and machine 

learning technologies are expected to further enhance the predictive and adaptive control by 

enabling the automated decision-making and improving the accuracy of demand 

forecasting. To fully realize the potential of an intelligent control in District Heating 

Systems, the collection and integration of data from diverse sources is paramount. A robust 

Data Acquisition Platform is crucial for gathering, consolidating, and analyzing large 

volumes of data from IoT sensors, weather stations, smart meters, and other external 

systems. This platform supports the real-time monitoring, processing, and visualization of 

data, facilitating dynamic system adjustments based on current conditions. Through 

predictive algorithms, the platform enables the optimization of heat supply and load 

distribution, reducing energy costs and enhancing overall system efficiency. 

By enabling intelligent decision-making based on real-time and historical data, the 

Data Acquisition Platform enhances the adaptability and sustainability of DHS, ensuring 

that systems can respond to changing conditions, maintain reliable service, and reduce 

environmental impact. Ultimately, the incorporation of advanced technologies into the 

data collection process not only ensures the efficient operation of DHS but also 

contributes to a more sustainable and cost-effective approach to heat distribution. 
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