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Abstract. Implementation conditions of a transfer functions by the system with partially 

given structure are considered. It is supposed, that all coefficients (roots) of the 

denominator and partial coefficients of the numerators of these transfer functions can be 

appointed arbitrary, according to the desirable performance of the control system. The 

design problem of the control system has a mathematical solution and the controller can 

be implemented. The stated implementation conditions are necessary for the design of the 

control systems models which can be implemented precisely. 
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1. INTRODUCTION   

Control systems usually include some unit in which a controlled process proceeds. 

This unit is provided with gauges, control actuators and servo mechanisms. All these 

elements are usually called a plant and are described by a mathematical model. The 

design problem of a closed system will consist in the definition of structure and 

parameters of an automatic regulator (the control device or a controller) for this plant [1, 

2 and 3]. As the plant is given, this design problem refers to the design problem of the 

closed control system with a partially given structure. 
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If the system is designed using feedback on the state variables, the implementation 

problem does not occur and the design problem is solved analytically [2 – 4]. It is 

difficult to provide the desirable performance of a control system such as astatic order, 

overshoot, settling time and the decrement at this approach was marked by Filimonov [5].  

The desirable performance is determined by coefficients of the system transfer 

functions directly. Therefore the methods of control systems design on the basis of 

desirable transfer functions are preferable [2, 6 – 9]. The difficulties of this approach are 

caused by the fact that the desirable transfer functions should be formed under some 

restrictions. The design problem would have the mathematical solution; the control 

system would have a desirable performance and the control would be implemented. 

Conditions on transfer functions of the system with the given plant under which the 

shown restrictions can be fulfilled refer to as "implementation conditions of the transfer 

functions by a system with partially given structure". 

It will be shown below that the known implementation conditions of transfer functions 

by a system with partially given structure [2, p. 285] are not sufficient. In some cases 
under these conditions the design problem can not have the mathematical solution or the 

found control cannot be implemented.   

Proposed below are the necessary and sufficient conditions of implementation of transfer 

functions by a system with a partially given structure that includes an additional condition on 

the order of the closed system. The problem of control system design always has the 

analytical solution under these conditions. Structure and parameters of the controller are 

determined by the solution of some linear equations system or polynomial equations. 

The proposed conditions are focused on control systems with one reference input, one 

controlled output and, probably, with disturbances both measured and not measured 

within a plant These conditions are deduced from the analytical expressions including 

polynoms (operators) of the "input-output" equations of the closed system, plant and 

controller. Also it is supposed that the transfer functions are implemented by the system 

with control on "output and impact" suggested in [6]. 

The purpose of this article is to show restrictions, which are necessary to be taken into 

account in the process of the formation of transfer functions of the designed control 

system. These restrictions are caused by the plant, controller and a the possibility to 

appoint all coefficients of a denominator and partial coefficients of numerators of the 

transfer functions according to the desirable performance of system. 

The paper is organized as follows. In section 2 the mathematical model of control 

system with partially given structure and also statement of the system design problem are 

presented. The implementation conditions of transfer functions by the system with 

partially given structure are discussed in Section 3. The concluding remarks are given in 

the last Section. 

2. STATEMENT OF IMPLEMENTATION PROBLEM   

Let a plant described by the operational "input-output" equation 

                     0 1 1 2 2( ) ( ) ( ) ( )A p y B p u B p f B p f   ,                                   (1) 
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where y is the controlled variable, u is control input, 1 2,f f  are measured and unmeasured 

disturbances, respectively; ( )A p , ( )jB p  are polynomials of degrees , jn m , 0,1, 2j   

with known numerical coefficients. Here ( )A p  is the characteristic polynomial of this 

plant, normalized on the highest degree p [1, 2, 6]. Note that the roots of polynomials 

( )A p  and ( )jB p  are referred as poles and zero of the plant (1). 

The relative degrees of the transfer functions ( )yuW p , 
1
( )y fW p , 

2
( )y fW p  of the plant 

(1) are determined [2] by expressions: 

0yu n m   ,  
1 1y f n m   ,   

2 2y f n m   ,                          (2) 

and the relative order μ pl  of this plant is determined by equality   

μ pl yu  .                                                      (3) 

Let's note the relative order of a plant equals the minimal order of the time derivative a 

plant output variable, which directly depends on control. For example, consider the 

transfer function 
2 3

0 1 0 1 2( ) ( ) /( )yuW p p p p p       , where 1β 0 , 3n  , 

0 1m  . In this case, according to (2) and (3) μ =μ 3 1 2pl yu    . On the other hand, it is 

well-known that the plant having this transfer function is described by the equations: 

1 2x x ; 2 3x x ; 3 0 1 1 2 2 3x x x x u     ; 0 1 1 2β +βy x x , where ix  is a state 

variable, 1,i n  where 3n  , /x dx dt . Here the first derivative of variable ( )y t  is 

0 2 1 3β βy x x  and the second derivative 0 1 1 1 1 2 0 0 1 3 1α β α β (β α β ) βy x x x u . 

Evidently, ( )y t  and ( )y t  do not depend on control ( )u t  directly, but the second 

derivative ( )y t  depends, hence μ = μ 2pl yu  . 

Without the loss of generality, we will accept that the plant (1) is full, that means it is 

completely controlled and completely observable [3]. In view of the condition on the 

polynomial ( )A p  accepted above, this assumption is equivalent to the condition  

0GCD{ ( ), ( )}A p B p Const ,                                          (4) 

or in the words the polynomials ( )A p  and 0 ( )B p  have no equal roots [6]. Here GCD is 

the greatest common divider. 

The controller equation is defined by the accepted principle of control. In this case 

according to the principle of "control on output, reference and disturbances (shortly, control on 

output and impact)" [6, 9], we will accept controller equation as 

0 1 1( ) ( ) ( ) ( )R p u Q p g L p y Q p f   ,                                       (5) 

where g  is the reference input of the closed system [2]; ( ) ( ) ( )R p R p N p   and ( )R p , 

( )N p , ( )L p , 0 ( )Q p , 1( )Q p  are some polynomials. Their degrees and coefficients 

should be determined during the design of the closed system (1), (5). Here ( )R p  is 

characteristic polynomial of controller (5), that is controller order deg ( )r R p .  

Relative degrees of the controller transfer functions are determined by expressions: 

0deg ( )u g r Q p   , deg ( )uy r L p   , 
1 1deg ( )u f r Q p    and their relative order  

1

min{ , , }cu u g u y u f
     .                                           (6) 
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Let's note that all measured signals are used in the equation (5). And this controller 

should be implemented as a uniform block with several inputs and with one output [6, 9]. 

Also if 0( ) ( )L p Q p , the equation (5) corresponds to the traditional principle of control on 

error g y    and disturbance 1f  [1, 8]. 

The controller (5) can be successfully implemented if 

0cu cu
    ,                                                   (7) 

where μcu
  is the supposed value of the controller relative order [3, 6, 9]. 

Practically, value μcu
  depends on properties of those technical elements on the basis 

of which the controller device will be implemented. For example, if the used operational 

amplifiers are broadband, it is possible to take 0μcu
  . Otherwise, it is necessary to take 

1μcu
  . It is caused by that if 0μcu

  , then direct channel is formed between the inputs 

and output of the controller. When 1μcu
  , such channel is not formed. 

The closed system "input-output" equation following from expressions (1) and (5) is 

                  0 1 1 2 2( ) ( ) ( ) ( )D p y H p g H p f H p f   .                               (8) 

Operators of this equation are determined by the expressions: 

0( ) ( ) ( ) ( ) ( )D p A p R p B p L p  ,                                      (9) 

0 0 0( ) ( ) ( )H p B p Q p ,                                             (10)  

 1 1 10( ) ( ) ( ) ( ) ( )H p B p Q p B p R p  ,                                   (11) 

2 2( ) ( ) ( )H p B p R p .                                              (12) 

From (8) and (9) the order of the closed system (1), (5) it follows that 

sys deg ( )n D p n r   . The relative degree yg  of the transfer function 0( ) ( ) / ( )ygW p H p D p  

of the system (8) and its relative order sys are defined (when cu uy   ) by expression 

sys 0 0 0deg ( ) deg ( ) [deg ( ) deg ( )]yg D p H p n r B p Q p          or  

plμ μ μsys cu  .                                                                                                                               (13) 

In particular, if 0cu   from (13) we have μ μsys pl
 
that is typical for systems with 

cu k   or 1 1 2 2 n nu k x k x k x    . 

The expressions (9)–(12) are equations which connect polynomials from the "input-

output" equations of the closed system, plant and the controller. After replacement D(p) 

on D
*
(p) and Hj(p) on H

*
j   (p), j = 0,1,2 the expressions (9)–(12) become resolving 

equations of the analytical design problem of the control system with a partially given 

structure. In these equations the polynomials A(p), Bj(p) are known as the plant is given. 

Also, polynomials D
*
(p), H

*
j   (p), j = 0,1,2, can be formed according to the requirements of 

stability and the desirable performance of the designed system. Polynomials from the 

equation (5) are unknown in these equations. It is very important that all the polynomial 

equations (9)–(12) are equivalent to the systems of linear algebraic equations with 

relatively unknown coefficients of polynomials ( )R p , ( )L p , 0 ( )Q p  and 1( )Q p  [6, 9]. 

Thus, for the design of a control system, first of all it is necessary to form polynomials 

D
*
(p) and H

*
j   (p), j = 0,1,2 which should satisfy some implementation conditions of 
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transfer functions by the system with a partially given structure. These conditions should 

provide: 

i) all coefficients (roots) of the polynomial D
*
(p) and partially of the polynomials 

H
*
j   (p), j = 0,1,2 can be appointed according to the desirable performance of the 

control system (1), (5); 

ii) the control system (1), (5) or (8) has a desirable performance, if D(p) = D
*
(p) and 

Hj(p) = H
*
j   (p), j = 0,1,2; 

iii) the equations system (9) – (12) has the mathematical solution relative to 

polynomials ( )R p ,  ( )L p , 0 ( )Q p , 1( )Q p ; 

iv) the polynomials ( )R p , ( )L p , 0 ( )Q p , 1( )Q p  satisfy the conditions (6), (7) which 

are the implementation conditions of the controller (5). 

3. SOLUTION OF THE TASK   

The mentioned above implementation conditions of transfer functions essentially 

depend on how the roots of a characteristic polynomial (system’s poles) are appointed. If 

the system poles are appointed without taking into account the plant poles or zeros, the 

system is referred to as "a system with independent poles". In this case the implementation 

conditions of transfer functions are rather rigid. If poles are appointed so that a part of 

them is equal to zero or poles of the plant, the system is referred to as "system with 

coordinated poles". In this case implementation conditions of a transfer functions on 

referent input are the least rigid. Therefore, following [1, 2], we will consider only the 

closed systems with coordinated poles.  

For a system stability it is necessary that all roots of the polynomial (9) have a 

negative real part. Therefore, the factorization of the polynomials A(p) ( )A p  and B0(p) is 

carried out as follows: 

 ( ) ( ) ( )A p A p A p  ,  
00( ) ( ) ( )mB p B p B p   ,                      (14) 

where ( ), ( )A p A p   and ( ), ( )B p B p   are the polynomials normalized on the highest 

degree p; m0
 is coefficient of the polynomial 0 ( )B p  at the highest degree p. Here 

( ), ( )A p B p 

 
are the polynomials whose roots are equal to roots of the polynomials 

A(p) and B0(p) with strictly negative real parts (located in strictly left half-plane). Thus it 

is supposed that all roots of the polynomials ( )A p  and ( )B p

 
are included in the 

characteristic polynomial of the closed system. Generally, each of the polynomials ( )A p , 

( )A p

 
and ( )B p , ( )B p

 can be equal to 1. The choice of the roots of the polynomials 

A(p)
 
or (and) B0(p) which are included in the characteristic polynomial of a system, 

should be done in the view of the designed system properties.  

For systems with coordinated poles the polynomials from (5) should have the following 

form: 

( ) ( ) ( )R p B p R p ,  ( ) ( ) ( )L p A p L p ,  0 0( ) ( ) ( ) ( )Q p A p M p Q p  ,        (15) 

where ( )R p , ( )L p , ( )jQ p , ( )M p  are polynomials which are defined during the design 

of a control system [6, 9]. From expressions (9), (10) and (15) it follows that polynomials 
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0 ( )H p  and ( )D p
 
of the system (1), (5) or (8), by which the transfer function on reference 

W 
*
yg   (p) = H0

*
 (p) / D

*
   (p) is implemented, look like 

0 0( ) ( ) ( ) ( ) ( )H p B p A p H p M p    ,                                     (16) 

          
*( ) ( ) ( ) ( ) ( )D p A p B p D p M p   .                                       (17) 

The polynomials ( )R p , ( )L p , 0 ( )Q p  in equalities (15) are determined by the solution of 

linear algebraic equations, following from the equations (9), (10) in the view of equality 

(14)–(17) [6, 9]. The examples of these systems are given below. The polynomial 

( )M p  in (16), (17) is necessary to increase the order of system (1), (5) up to necessary 

value in some cases. The designed system (1), (5) includes not controlled and not 

observable subsystem with polynomials ( ), ( )A p B p   and ( )M p . These polynomials 

influence the properties of the system only in transients if initial conditions are non zero. 

3.1. Implementation conditions of transfer function on reference  

According to [2] the transfer function * * *
0( ) ( ) / ( )ygW p H p D p  is implemented by the 

system with a partially given structure if the following conditions are satisfied 

0deg ( ) deg ( ) μ μyg pl cuD p H p        ,    * *
0 0( ) ( ) ( )H p B p H p .          (18) 

As it will be shown below, these conditions are necessary but insufficient for 

conditions i) – iv) to be fulfilled. Usually, the coefficients (roots) of the polynomials D
*
(p) 

and 0 ( )H p
 are appointed arbitrarily, according to the desirable performance of the 

designed system. Therefore in some cases the equations (9) and (10) have no solution relative 

to polynomials ( )R p , ( )L p , 0 ( )Q p  or these polynomials do not satisfy the conditions (6), 

(7), though conditions (18) are fulfilled.  

All conditions i) – iv) can be fulfilled, if in addition to the conditions (18) the 

polynomial D
*
(p) satisfies [6, 9] the inequality  

*deg ( ) deg ( ) μcuD p n B p                                    (19)   

and the degree of the polynomial ( )M p  from (15) – (16) is determined by the expression 

*deg ( ) max{0;  2 1 deg[ ( ) ( ) ( )]}μcuM p n A p B p D p       .               (20) 

The expressions (18)–(20) represent the necessary and sufficient implementation 

conditions of a transfer function 
* ( )ygW p  by a system with a partially given structure. 

Practically, the expression (20) is equivalent to the inequality 1 cur n     that is the 

restriction on the order of the control device (5). This inequality, evidently, corresponds 

to the known W.R. Ashby principle of "a necessary diversity". 

Let's show the importance of the conditions (18)–(20) on some examples. Preliminary 

notice is that if *deg ( )D p  is equal to the minimally possible value deg μcun B    

(19), the numerator of 
* ( )ygW p  is equal to η ( )B p  , where η  is the unique appointed 

coefficient. Hence, to increase the number of appointed coefficients of the polynomial 
*
0 ( )H p , it is necessary to increase the degree of the polynomial *( )D p  over the value 

deg μcun B   . 
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3.2. Necessity of the first condition (18)  

Consider the transfer function 
2 2

0 1 2 0 1 2( ) ( ) /( )ygW p p p p p             , where 

the coefficients ,i i
   , 0, 1, 2i   have the arbitrary values caused by the desirable 

performance of the designed control system. It is necessary to implement this function 

using (1), (5), where polynomials 0 0( )B p   , 0 1( )A p p    and 0 0  , 1 0  . 

The controller (5) is implemented at 0cu
  . In this case the plant has 1pl   and the 

given function ( )ygW p
 has 0yg

  , that means the first condition (18) is not fulfilled. If 

we do not take this fact into account, and we substitute the polynomials 0( ), ( )A p B p  and 
2

0 1 2( ) ( )D p D p p p         in (9), it is easy to establish [6, 9] that with ( )R p   

0 1 p   and 0( )L p    this equation is equivalent to the system  

00 0 0

1 0 0 1

1 1 2

0

0

0 0







      
    

        
            

. 

The solution of this system determines values of the coefficients 0, 0 and 1. Similarly, the 

polynomials 
2

0 0 0 1 2( ) ( )H p H p p p         and 0 0( )B p    are substituted in the 

equation (10).  Its solution gives 
1 2

0 0 0 1 2( ) ( )Q p p p        . Hence, in this case 
1 0 1u y     and 1 2 1u g     , that is according to (6) min{1; 1} 1cu     . 

Evidently, the condition (7) is not fulfilled and the corresponding controller (5) cannot be 

implemented precisely. 

3.3. Necessity of the second condition (18) 

This condition follows from resolvability of the equation (10) concerning polynomial 

Q0(p) and stability of the closed system (1), (5). Really, the polynomial B
+
(p) cannot be a 

multiplier of the polynomial D(p) on the stability conditions of this system. Therefore 

polynomial ( )D p  can be as (17) and we have from expressions (8), (10), (14)   

0 00

*

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )

m

yg

B p B p Q pH p
W p

D p A p B p D p M p

 

  


  . 

Setting here 0 0( ) ( ) ( ) ( )Q p Q p A p M p  , we will obtain 

0 00

*

( ) ( )( )
( )

( ) ( )

m

yg

B p Q pH p
W p

D p D p


  .                                  (21) 

General view of the operator (16) and the necessity of the second condition (18) follow 

from here with 
0

1
0

*
0( ) β ( )mQ p H p ; otherwise the polynomial equation (10) with 

0 0( ) ( )H p H p  has no solution. 

Note, that the right part of the expression (21) with 0

1
0

*
0( ) β ( )mQ p H p  is a 

transfer function which can be implemented by the system with a partially given structure 

and with coordinated poles. 
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3.4. Necessity of the condition (20)  

Let the full plant be described by the equation (1) where polynomials ( )A p  
2( 4)( 2 )p p p 

 
and 0 ( ) 4(2 )(1.5 )B p p p   , that is 3n  , 

0 2m  . Also, let 

( ) 4A p p   , 2( ) 2A p p p   , ( ) 2B p p   , ( ) 1.5B p p    and 0μcu
  . Then, 

deg ( ) 1A p  , deg ( ) 2A p  ,  2 4   , deg ( ) 1B p  , deg ( ) 1B p  , 1pl  . The 

given transfer function  

2
1 2( ) 2( 1.5) /( )ygW p p p p       . 

Hence in this case 0 ( ) 2( 1.5)H p p    , 
2

1 2( )D p p p     , 
*deg ( ) 2D p  ,  1yg

  , 

0 ( ) 2H p   . Both conditions (18) are evidently fulfilled. The coefficients 1 2,    have 

arbitrary values caused by desirable performance of the designed control system. 

If ignoring the condition (20) to put a polynomial ( ) 1M p   in (15)–(17) we will 

obtain 2
1 0( ) ( 2)( 4)( )D p p p p p      , that is sys deg ( ) 4n D p  . As sysr n n   

we have 4 3 1r    , and from (15) we find: deg ( ) deg ( ) 0R p L p  , ( )R p   

0 ( 2)p  , 0( ) ( 4)L p p   . The equation (9) with the resulted polynomials after 

simplification looks like this: 2 2
0 0 1 0( 2 ) ( 4 6)p p p p p          . To this 

polynomial equation the following algebraic system corresponds: 

0

0

1

0

6 0

4 2

0 1 1





  
   

               

.                                          (22) 

The system (22) evidently does not have solution for all values of the coefficients 0
 , 

1
 . On the other hand, if  1 02( 3) /3      , the system (22) formally has a solution, but 

it is impossible to make the closed system stable.  

Generally, the design task of a low order controller certainly can be obtained [10, 11]. 

This task consists in finding such solution of a system similar to (22) at which properties 

of the closed system are comprehensible. However, the solution of such problem exists in 

very rare cases. 

In our case the previous polynomial equation has a solution with arbitrary values of 

the coefficients 0
 , 1

 , if 0( ) ( 2)R p p    and 1 0( ) ( )( 4)L p p p    . The 

algebraic system equivalent to the equation 
2

0 1 0( 2 ) ( 4 6)( )p p p p         
2

1 0p p   will be written down as follows: 

00

1 1

0

6 0 0

4 6 2

0 4 1 1





   
   

       
          

, 

and it has a solution with arbitrary values of the coefficients 0
 , 1

 . But the 

corresponding controller (5) has deg ( ) deg ( ) 1cu u y R p L p        and cannot be 

implemented precisely. 



 Formation of Transfer Function for Control Systems under Implementation Conditions 23 

Practically, the condition (20) allows for the fulfillment of the conditions iiii) and iv) 

with arbitrary roots (or coefficients) of the polynomial D
*
(p). Let us assume , that in the 

example considered above, the desirable transfer function is described with 
2( ) 2( 1.5) /( 5 3)ygW p p p p      . Now with the account condition (20) we have - 

deg ( ) 1M p  . Let - ( ) 1M p p   , then from (17) sys deg ( ) 5n D p   and 5 3 2r    . 

From (15), since 0cu
  , it follows that  deg ( ) 1R p  , deg ( ) 1L p   or 1 0( )L p p   , 

1 0( )R p p    and the product 3 2*( ) ( ) 6 8 3D p M p p p p     . Now the system, 

equivalent to the polynomial equation (9), looks like the following: 

0

1

0

1

6 0 0 0 3

4 6 2 0 8

0 4 1 2 6

0 0 0 1 1

    
    
 
    
     
    
    

, 

The solution of this system is 0 0.5  , 1 13   , 0 44   , 1 1   and polynomials 

( ) ( 2)( 44)R p p p   , ( ) ( 4)( 13 0.5)L p p p    . From (10), (16), (14) and the equality 

(18) we find 
0

1

0 0( ) ( ) ( ) ( )mQ p A p M p H p     , therefore 
0 ( ) 0.5( 4)( 1)Q p p p   . Hence, 

the controller according to (5) is described by the following equation: 

2 2 2( 42 88) (0,5 2.5 2) ( 13 51.5 2)p p u p p g p p y         . 

The equations of this controller in state space are: 

0 88 46 1142

1 42 23.5 597.5
z z g y

     
       
     

,   0 1 0.5 13u z g y   .              (23) 

where 
1 2[ ]Tz z z  is the state vector. 

The closed system with the given plant and the controller (23) has transfer function 
 

2 2

2( 2)( 4)(1.5 )( 1) 2(1.5 )
( ) ( )

( 2)( 4)( 5 3)( 1) 5 3
yg yg

p p p p p
W p W p

p p p p p p p

    
  

      
. 

This example shows that the expressions (18) – (20) are the implementation conditions 

of transfer functions on the reference by the system with partially given structure. The 

transfer function ( ) ( 2)( 4)( 1) /( 2)( 4)( 1)unfW p p p p p p p        represents here an 

incomplete subsystem. Evidently, this subsystem does not influence the properties of the 

system in the steady state mode. 

3.5. Transfer functions on the disturbances are applied to plant 

Note, generally it is possible to take the polynomials ( )L p , 0 ( )Q p , ( )R p  in (15) and 

1( )Q p  in (5) as 0( ) ( ) ( ) ( )L p Q p G p L p  , ( ) ( ) ( )R p p R p   and 1 1 1( ) ( ) ( )Q p F p Q p , 

where 1 2( ) LCM{ ( ), ( ), ( )}p G p F p F p  . Here the polynomials ( )G p , 1( )F p  and 2 ( )F p  

are ( )K p images of the reference signal ( )g t , disturbances 1( )f t  and 2 ( )f t  accordingly; 

LCM is the least common multiplier. Note, if 1( ) 0f t   and (or) 2 ( ) 0f t   then 1( ) 1F p   
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and (or) 2 ( ) 1F p  . Practically, ( )K p - an image of some function ( )f t  is equal to the 

denominator of Laplace transformation of this function [9]. 

From the expressions (8)–(11) and (14)–(17), according to the entered designations it 

follows that the transfer function on the error from reference and the transfer function on the 

measured disturbance 1( )f t , which are implemented by the system (1), (5), are: 

0

*

( ) ( )
( )

( )
g

G p H p
W p

D p
  ,    

1

1 1( ) ( )
( )

( ) ( ) ( )
y f

H p F p
W p

A p D p M p



 
 ,   

where 
00 0( ) ( ) ( ) ( ) ( ) ( )mH p A p p R p B p L p     and 

01 1 1 1( ) ( ) ( ) ( ) ( ) ( )mH p B p Q p B p p R p     

are polynomials whose coefficients can partly be appointed so that the closed system has 

desirable performances of channels g y  and 1f y . Here -  
1

0 ( ) ( ) ( )p G p p   ,  
1

1 1( ) ( ) ( )p F p p   . 

The transfer function on the unmeasured disturbance 2 ( )f t , which is implemented by 

the system (1), (5) with coordinated poles, is 

2

2 2 2( ) ( ) ( )
( )

( ) ( ) ( )
y f

R p B p F p
W p

A p D p M p 
 , 

where 1
2 2( ) ( ) ( )R p F p R p . 

Note that the polynomials ( )G p  and 1( )F p , 2 ( )F p  can be used for obtaining some 

astatic order to a reference ( )g t  and disturbances 1( )f t , 2 ( )f t  of the system [12]. 

Application of the control principle on output and impact excludes the known difficulties 

connected with the stability of a system having the high astatic order [6, 9]. 

To design systems with the desirable degree of stability, the factorization of 

polynomials ( )A p  and 0 ( )B p  is necessary to be carried out with respect to some area 

Ω [6]. The area Ω  is entirely in the left-half of the complex plane and poles of the 

designed system (1), (5) should be placed only in this area according to the desirable 

performance of system. The equalities (14) are replaced by equalities Ω Ω
( ) ( ) ( )A p A p A p , 

0 Ω Ω0( ) ( ) ( )mB p B p B p   and all subsequent expressions and conditions do not change, 

except for evident replacements of polynomials in this case. Here Ω ( )A p  and Ω ( )B p  are 

the normalized polynomials, whose roots are equal to those roots of the polynomials 

( )A p  and 0 ( )B p  located in area Ω  and are included in poles of the designed system. 

4. CONCLUSION   

The implementation conditions of the transfer functions are proposed here. All 

coefficients (roots) of the denominator and partly of the numerator of the transfer 

functions can be appointed arbitrary under these conditions. Practically, these coefficients 

are appointed according to the desirable performance of a control system in the transitive 

and steady state mode. The submitted conditions include restrictions on the relative 

degree and zeros of the implemented transfer functions and on the order of the 

implementing system. They provide implementation of the transfer function by the closed 

system with partially given structure and the coordinated poles.  
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The conditions of implementation can be applied to form transfer functions of the 

designed control system with the given plant and desirable performance for which design 

problem has analytical solution. 
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