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Abstract. The aim of this paper is performance analysis of the hybrid radio frequency 

(RF)/free-space optical (FSO) system, where the transmission is performed simultaneously 

over FSO link and spectrum sharing cognitive RF sub-system. The FSO link is affected by 

Gamma-Gamma atmospheric turbulence, while in spectrum sharing cognitive RF sub-

system the peak interference power constraint at the primary user's receiver is considered 

in Nakagami-m fading environment. Outage probability expressions are provided in the 

integral form for the case when the maximal ratio combining (MRC) is applied at the 

destination. The effects of the atmospheric turbulence strength, the number of RF 

antennas, allowable power and fading severity on the outage performance are observed. 

Numerical results are presented and verified by Monte Carlo simulations.  

Key words: cognitive radio, free-space optical communications, interference power 

constraint, Nakagami-m fading, outage probability, spectrum sharing 

communications. 

1. INTRODUCTION 

Free-space optical (FSO) systems have become very important since they enable more 

economical optical signal transmission in regard to fiber optics, proving savings in time 

and money [1]. Furthermore, the FSO system implementation has a number of advantages 

over radio frequency (RF) systems because they use unlicensed and wider bandwidth, 

providing high transmission speeds and supporting a larger number of users. Also, these 

systems are characterized by the absence of interference, easy and quick implementation, 
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being a suitable solution for the “last mile” problem [1]. In addition to the offered 

aforementioned advantages, the use of FSO systems is limited by the presence of atmospheric 

turbulence, which occurs as a result of random changes in refractive index caused by variations 

in atmospheric pressure, temperature and altitude. One of the statistical models proposed to 

describe the intensity fluctuations, which are result of the atmospheric turbulence phenomenon, 

is a Gamma-Gamma model suitable in a wide range of conditions of turbulence [1]. 

The atmosphere and weather conditions differently affect the quality of the wireless 

signal in RF and FSO transmission. For example, fog degrades the FSO link performance to a 

large extent, until rain has a negligible effect on signal transmission over FSO channels. On the 

other hand, heavy rain has an impact on the RF signal transmission, while the influence of fog is 

small and negligible [2]–[3]. The idea of the hybrid system deployment comes from the fact 

that RF and FSO are both the wireless technologies, but weather conditions differently affect 

the quality of corresponding signal transmission. To obtain better system performance, the 

hybrid RF/FSO systems have been proposed in the literature [4]–[5]. In [4], by using the 

experimental measurements, the authors proved that hybrid system with RF and FSO 

channels significantly increase availability compared to the FSO system only. The average bit 

error rate (BER) performance of hybrid RF/FSO system employing maximal ratio combining 

(MRC) and selection combining (SC) diversity at the receiver are derived in [5]. 

The performance improvement can be also achieved by introducing the relay technologies, 

which provide the line-of-sight and the FSO link deployment [6]. The first hop is usually RF 

link, while the second hop represents FSO signal transmission. The analysis of the RF/FSO 

system performance with amplify-and-forward (AF) relay has been extended through the papers 

[7]–[10]. Further improvement of the system performance can be accomplished by the hybrid 

RF and RF/FSO systems, which besides the RF/FSO relay links have direct RF link [11]. 

Assuming the fading over RF link is modeled by Rayleigh distribution and the FSO link is 

described by the combined model that considers Gamma-Gamma atmospheric turbulence and 

pointing errors, the performance analysis of the hybrid RF and RF/FSO systems were presented 

in [11]–[12]. Outage performance of such system where RF links are modeled by Nakagami-m 

distribution is analyzed in [13]. 

On the other hand, cognitive radio is proposed as effective solution for overcoming the 

problem of the lack of available spectrum bands [14]. Although the various concepts of 

cognitive radio communications exists [15], spectrum sharing has advantage of simultaneous 

using the spectrum with the licensed (primary) user. In this concept cognitive user is allowed to 

transmit as long as the interference it causes at the input of the primary receiver is lower than 

the permitted threshold [16]. In order to fulfill these requirements, transmit power of the 

cognitive user is adapted to the conditions in the propagation environment [17], which further 

limits spectrum sharing system performances. The improvement of system capacity by 

employing MRC at the cognitive receiver is proposed in [18]. The performances of spectrum 

sharing system with MRC are analyzed in [19] for the case of Rayleigh fading, while the 

capacity analysis is provided in [20] for Nakagami-m propagation environment.  

The use of combined RF/FSO system in which the RF part includes cognitive radio 

transmission is proposed in [21]–[22]. The authors analyzed asymmetric mixed RF/FSO dual-

hop transmission system, where first section power control is applied to maintain the 

interference at the primary network within a predetermined threshold (i.e., the spectrum 

sharing cognitive radio transmission) and the second link is trailed by FSO technology. 
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In this paper we analyze the performance of a hybrid RF/FSO system, where the 

license-free communication is provided by the FSO sub-system, while the RF sub-system 

is employed as the back-up link. In the RF domain, user is allowed to maintain spectrum 

sharing communications under peak interference power constraint. It is also assumed that 

maximal transmit power of RF transmitter is limited. Unlike [21]–[22] signal transmission 

is performed simultaneously via the FSO link and cognitive spectrum sharing RF system, 

when the MRC signal combining at the destination is applied. Outage probability 

expression is derived and the effects of the power limitations and atmospheric turbulence 

parameters on system performance are analyzed. The numerical results are confirmed by 

Monte Carlo simulations. 

2. SYSTEM AND CHANNEL MODEL 

The system consists of the FSO and the cognitive RF sub-systems. In the FSO part of the 

system, signal transmission is performed through the channel influenced by atmospheric 

turbulence. Since the FSO link performance is heavily dependent on certain weather 

conditions (e.g. fog), the RF sub-system is used as the back up link. The user in the RF 

domain shares spectrum licensed to the primary user, so the signal transmission is performed 

with certain restrictions. The peak interference power constraint is assumed in the considered 

RF sub-system scenario. The receiver is equipped with multiple RF antennas and the optical 

detector which converts the optical signal into an electrical one. The MRC diversity is 

applied at the receiver to perform signal combining. 

 

Fig. 1 Hybrid cognitive RF/FSO system model 

As shown in Fig. 1, the signal from the transmitter to the receiver is carried over two 

parallel channels, i.e. FSO and RF sub-systems. The FSO sub-system consists of single 

FSO link. On the other hand, in the RF sub-system it is assumed that transmitter shares 

the spectrum with the primary user under the assumption of the peak interference power 

constraint and the maximal allowable power. 
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2.1. FSO sub-system 

The FSO sub-system consists of transmitting aperture and receiver detector, which 

employs intensity modulation and direct detection (IM/DD) with On-Off (OOK) scheme. 

The simplicity of OOK scheme reflects in the fact that the optical source (laser) is active 

only when the bit “on” is transmitted. At the transmitting part of the FSO sub-system, signal 

bearing information is intensity modulated by electro-optical modulator IM/OOK. The size 

and direction of the optical beam are determined by laser source within the transmitting 

telescope, which sends optical beam to the receiver via atmospheric turbulence-induced 

channel. If the average transmitted optical power is denoted by Pt, the signal intensity at the 

transmitter output is 2Pt when transmitted bit is “on”, and 0 when transmitted bit is “off”. 

The FSO link is impaired by the atmospheric turbulence which causes the intensity 

fluctuations at the received signal. At the destination, direct detection is performed and the 

optical signal is converted to the electrical one by PIN photodetector with a conversion 

coefficient . The received electrical signal is given in the form [23] 

 nIxy   , (1) 

where x  {0,2Pt}, n is the additive white Gaussian noise (AWGN) with the zero-mean 

and variance 
2
n and I is the fading amplitude over the FSO link which originates from the 

atmospheric turbulence. Another method for converting an optical signal into an electrical 

one can be performed by avalanche photodiode (APD) [24]. 

Based on (1), the instantaneous SNR is defined as  
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where [] denotes the statistical expectation. The alternative SNR definition usually used 

in FSO literature is the average electrical SNR. Since I is normalized, it holds E[I] = 1, so 

the electrical average SNR is given by [25] 
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The FSO sub-system is under the influence of atmospheric turbulence which causes 

the intensity fluctuations at the received signal modeled by Gamma-Gamma distribution. 

The instantaneous SNR, FSO, has the probability density function (PDF) given by [6] 
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where Kv() is the v-th order modified Bessel function of the second kind [26, eq. (8.432.2)]. 



 Outage Performance of Cognitive RF/FSO System with MRC Scheme at the Receiver 209 

The parameters α and β are the atmospheric turbulence parameters related to the atmospheric 

conditions trough the Rytov variance 
2
R. The plane wave propagation and zero inner scale 

are considered, so the parameters α and β are found as [1], [24] 
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where the Rytov variance 
2
R is used as a metric of the turbulence strength. 

The cumulative distribution function (CDF) is given by [5] 
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2.2. Cognitive RF sub-system 

We consider the RF sub-system where transmitter shares the spectrum with the 

primary user, under the constraint that peak interference power that secondary user causes 

at the primary user’s receiver cannot exceed predefined threshold Qp. Also, we assume 

that the maximal transmit power of the secondary transmitter is limited and equal Pm. 

Furthermore, in RF domain, the receiver is equipped with nR receive antennas and applies MRC 

to signals from all nR antennas.  

Fading envelopes hi, i=1, ..., nR are assumed to be independent and identically 

distributed (i.i.d) random variables (RVs), following the Nakagami-m distribution, with 

fading parameter at the secondary link equal mSi=mS, i=1, ..., nR and normalized mean 

square value S = E[h
2
i]/mS  i =1, ..., nR. The corresponding PDF is given with [27] 
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Fading envelope, g, in the link from the secondary transmitter to the primary receiver also 

follows the Nakagami-m distribution, with the fading parameters equal mp, p = E[g
2
]/mp 

and the following PDF expression  
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The channel power gain of the secondary link between the transmitter and the MRC receiver is 

denoted by 
2

1
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  and follows Gamma distribution, with the corresponding PDF [27] 
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Similarly, the channel power gain of the link from the secondary transmitter to the 

primary receiver is denotes by b = |g|
2
 and it is distributed according to following PDF  
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The secondary transmitter applies power adaptation to fulfill the condition that the 

interference power at the primary receiver is lower than threshold Qp, and the transmit 

power of the secondary user PSU-Tx should satisfy  

 
SU Tx pbP Q  .  (12) 

In the considered scenario the maximal emitted transmit power of secondary user is also 

limited and equal Pm. Therefore, the RF transmit power is given by 
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The resultant SNR at the output of the RF receiver  RF is equal  
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where 
2
 denotes the noise at the input to the secondary user’s receiver. 

Using the transformations of R.Vs. and solving integrals as in [28, eqs. (8) - (10)], the 

PDF of R.V. RF is given by  
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By substituting PDF in CDF definition, using change of variables, [30, eq. (2.323)] and 

binomial distribution, the corresponding CDF expression is obtained 
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where En(c) is exponential integral function defined in [29, eq. (5.1.4)]. 

 3. OUTAGE ANALYSIS 

In considered system, the receiver employs the MRC scheme. The instantaneous SNR 

of combiner output signal represents the sum of the SNRs of each sub-system, which is 

expressed as 

 RFFSOeq   , (17) 

where FSO is the instantaneous SNR over FSO link previously defined in eq. (2), and RF 

represents the instantaneous SNR over RF sub-system given by eq. (14). 

The PDF of the MRC output is defined as [30] 
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where fRF(u) and fFSO(u) is given by eq. (5) and eq. (15), respectively. 

The CDF of the MRC output is found as 
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The integrals in eqs. (18) and (19) have no closed form, so the final outage probability 

expression is evaluated numerically. 

 4. NUMERICAL RESULTS  

In this Section we provide the numerical results for outage probability of hybrid 

cognitive RF/FSO system and highlight important effects obtained by combined use of RF 

and FSO systems. Theoretical values for outage performance of RF sub-system and FSO 

sub-system are obtained based on (7) and (16), respectively. Numerical results are confirmed 

using independent simulation method. 
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In Fig. 2 outage performance are compared for cognitive RF sub-system, FSO sub-

system and hybrid RF/FSO system. Outage probability dependence on outage threshold is 

presented, for different values of Rytov standard deviation, which determines atmospheric 

turbulence strength. In weak turbulence conditions over FSO link (R=0.8) and average 

electrical SNR FSO=25 dB, FSO sub-system shows better performances compared to 

cognitive RF system with nr=2, Pm=5 dB, Qp=0 dB in propagation environment with fading 

parameters ms=mp=2, S=P=1, 
2
=1. Also, FSO system has lower outage probability than 

the considered RF system for the threshold range from -3 to 20 dB in the strong turbulence 

condition (R=5). In accordance with expectations, the hybrid cognitive RF/FSO system with 

MRC at the destination gives the best performances. For example, for th =-5 dB and weak 

turbulence conditions, the outage performance will be improved from 210
-4
 to 3.4510

-7
 when 

the transmission is performed using hybrid RF/FSO system instead of FSO system. 
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Fig. 2 Outage probability vs. outage threshold for cognitive RF sub-system,  

FSO sub-system and hybrid RF/FSO system 

Outage probability in the function of the average electrical SNR per FSO link for 

hybrid RF/FSO system is presented in Fig. 3, assuming different number of RF antennas 

and various RF fading conditions. Theoretical results are in accordance with the 

simulation ones. The system performance is significantly improved using hybrid RF/FSO 

system with MRC instead of FSO system only. As it is expected, system shows better 

performances for a larger number of antennas. It can be notices that the system performance 

is improved for larger values of fading parameter, as fading severity is reduced in this case 

and average SNR in fading channels is increased. The performance gain obtained by using 

nr=3 antennas instead of nr=2, is greater in the propagation environment with higher values 

of fading parameter.  
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Fig. 3 Outage probability vs. average electrical SNR per FSO link for FSO sub-system 

and hybrid RF/FSO system for different fading condition and number of antennas. 

Fig. 4 presents the outage performance for cognitive RF/FSO system in the function of 

Rytov standard deviation. The numerical and simulation results are obtained for different 

values of the peak interference power constraint, Qp, considering the parameters 

ms=mp=2, nr=2, Pm=5 dB, th=-0 dB and FSO=20 dB. The figure also presents the results 
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Fig. 4 Outage probability dependence on R for FSO sub-system 

and hybrid RF/FSO system for different Qp. 
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for the FSO sub-system. Outage probability values increase with R, for all considered 

cases. For Qp=-5 dB, the value of the outage probability is increased from 0.00174 to 

0.04595, by changing the atmospheric turbulence condition from weak (R=0.8) to strong 

(R=5). Also, it can be noticed that the use of hybrid system significantly lowers outage 

probability and the outage probability performance of the RF/FSO system are better for 

higher values of the peak interference power constraint.  

Outage performance for the cognitive RF sub-system and hybrid RF/FSO system in 

the function of the maximum allowable transmitter power Pm are presented in Fig. 5. For 

lower values of Pm (Pm<-5dB), the influence of the peak interference power constraint on 

the outage probability can be neglected. The increase of Pm leads to the system 

performance improvement when Pm takes the values from -5 to 5dB. Further increasing of 

the maximal allowable power does not lead to system performance improvement (the 

outage floor occurs), and the system performance is determined only by the peak 

interference power constraint. Also, it can be observed that the use of hybrid RF/FSO 

system improves outage performances compared to the use of cognitive system. For 

example, the hybrid RF/FSO system for Qp=0dB outperforms cognitive RF system when 

Qp=5 dB. It means that the similar system performance of cognitive RF system can be 

achieved by employing the hybrid RF/FSO system when the peak interference power 

constraint is lower (stricter condition of peak interference power constraint). 
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Fig. 5 Outage probability dependence on Pm for cognitive RF sub-system and  

hybrid RF/FSO system for different Qp values. 

Fig. 6 presents the outage probability dependence on peak interference power constraint 

Qp for different values of maximum allowable transmitter power Pm. The RF sub-system 

with 2 antennas is considered and propagation environment with ms=mp=2 and s=s=1. In 

the range of lower values Qp, the outage probability decreases regardless of the maximum 

allowable transmitter power. The outage floor appears at high values of Qp, and for larger 
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Pm the value of Qp where outage probability is saturated is larger also. The values of the 

outage floor decreases with the raise of maximal transmit power Pm and the value of 

parameter R. 
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Fig. 6 Outage probability dependence on Qp for cognitive RF sub-system  

and hybrid RF/FSO system for different Pm values. 

5. CONCLUSION 

This paper presents performance analysis of the hybrid RF/FSO system, which consists 

of direct FSO link and cognitive RF sub-system with the MRC diversity technique applied at 

the receiver. Besides FSO sub-system, the considered RF signal transmission is performed 

by sharing the spectrum with the licensed (primary) user under the peak interference power 

constraint. Based on derived expressions for outage probability, numerical results are 

presented and confirmed by Monte Carlo simulations. The effect of the FSO and RF sub-

system parameters on the outage probability is observed and the performance gain is 

analyzed. The presented results show that introducing the cognitive RF system as a back-up 

link provides better system performance that single FSO link in wide range of atmospheric 

conditions ensuring license-free transmission. 
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