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Abstract. When a person is in a certain emotional state, a large number of physiological
changes occur in the body. These changes significantly affect the way words are
pronounced compared to neutral speech. This means that the configuration of the vocal
tract changes depending on the speaker’s emotional state. Furthermore, in emotional
speech, physiological changes influence certain speech properties, such as speech rate,
intensity, and pitchSuccessful classification of emotional speech into the appropriate
emotion class requires extraction of salient speech features and construction of a feature
vector composed of discriminative attributes that facilitate accurate classification. In this
study, we use Gammatone Cepstral Coefficients (GTCC) as components of the feature
vector for speech emotion recognition. GTCC are a biologically inspired modification of
Mel-Frequency Cepstral Coefficients (MFCC). They are based on gammatone filters,
which simulate the human auditory system more effectively than the mel-frequency filters
used in MFCCThe remainder of the feature vector is composed of spectral characteristics
extracted from the speech signal. In our classification model, the components of the
feature vector are primarily extracted by performing spectral analysis on short-time
frames of the observed speech signal. Feature vectors constitute discriminative
representations that facilitate the more effective classification of speech into
corresponding emotional categories. Our classifier is based on Support Vector Machines
(SVM), with optimized hyper-parameters.
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1. INTRODUCTION

The vocal tract spectrally shapes the excitation signal generated by the vocal folds and
thereby functions as a spectral filter. Changes in the geometric shape of the vocal tract determine
which spectral components will be amplified and which will be attenuated. A word spoken by
the same speaker is never pronounced in exactly the same way, meaning that the feature vectors
of the spoken word are never one hundred percent identical. This variability is largely
influenced by differences in the speaker’s emotional and health state, various psychophysical
conditions, as well as age. The intensity of emotion, for each speaker, represents an individual
characteristic of their expressive style for conveying that emotion.

Speech is a non-stationary random signal, which means that its statistical properties change
over time. The reason for this is that structures such as the shape of the vocal tract, the position
of the tongue, and the shape of the mouth are variable, i.e., the elements that produce speech are
themselves non-stationary and inherit variability from the structures that generate them. Since
the shape of the vocal tract is also a variable factor, the features describing it are dynamic as
well. The variability of the vocal tract shape is conditioned by emotional state, social factors,
aging, health condition, psychophysical state, and ultimately by the act of speaking itself.

The most significant features of the vocal tract, according to the majority of authors who
have studied its analysis [8][9][10][11], are pitch (fundamental frequency), speech signal
energy, MFCC features, and spectral harmonics.

The frequency characteristics of the speech signal largely depend on the shape of the vocal
tract. Based on this observation, the feature vector in this work is composed of the frequency
characteristics of the speech signal. The remaining part of the feature vector is constructed using
Gammatone Cepstral Coefficients (GTCC). These coefficients are derived from a gammatone
filter bank based on the Equivalent Rectangular Bandwidth (ERB) scale, a type of filter bank
that mimics the way the human auditory system processes sound. GTCCs are used to capture
the spectral characteristics of speech signals. The computation of the proposed gammatone
cepstral coefficients is performed in a similar manner to MFCC extraction.

In [1], GTCC coefficients demonstrated superior performance in classifying emotional
speech in noisy environments. Some studies have shown that Gammatone Cepstral Coefficients
(GTCC) can provide equal or even better performance than MFCC due to the improved filter
response characteristics [3][4][5]. The implementation of an emotion recognition model should
be “robust” against noise factors, since failure to satisfy this condition directly affects classifier
accuracy [12][13]. Using a classifier whose feature vector includes GTCC rather than MFCC
yields better results when classifying speech utterances recorded in noisy conditions.

In our work we used a traditional SVM classifier, which achieved a respectable
classification accuracy. In recent years, research on emotion recognition from speech has
predominantly employed neural networks as classifiers to map speech signals into emotional
categories. For example, Prabhakar et al. [20] developed a multi-channel CNN-BLSTM
architecture with an attention mechanism for speaker-independent SER, taking into account
both phase and magnitude spectral features. Phase features were extracted using the Modified
Group Delay Function (MODGD) and combined with MFCC features. The IEMOCAP dataset
was used for performance evaluation, and the experimental results demonstrated improvements
over MFCC-based and other existing unimodal SER approaches.

Hama Saeed [21] proposed a DNN-based SER approach organized into three stages: feature
extraction, normalization, and emotion recognition. From the audio signals, MFCC, Mel-
spectrogram, chroma and polynomial (poly) features were extracted. SMOTE was used to
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augment minority classes and Min—Max scaling for normalization. The DNN model was
evaluated on three commonly used languages (German, English, and French) using the EMO-
DB, SAVEE and CaFE corpora, achieving strong results: 95% on EMO-DB, 90% on SAVEE
and 92% on CaFE.

Alluhaidan et al. [22] proposed a combination of MFCCs with time-domain features
(denoted MFCCT). Using CNNs, the hybrid MFCCT features demonstrated remarkable
effectiveness, outperforming both MFCC and time-domain features on benchmark datasets
such as Emo-DB, SAVEE and RAVDESS, with accuracies of 97%, 93% and 92%,
respectively.

The significance of this study lies in the fact that a unique feature vector was created, used
for the first time in the literature, consisting of GTCC values combined with selected spectral
features. Classification performance based on this feature vector demonstrated a high degree of
accuracy in assigning emotional speech to the corresponding emotional class.

In the second chapter, we describe the speech databases used for training and testing our
emotional speech classifier. This is followed by a section describing the Gammatone Filter Bank
and the methods of extracting emotional speech features that influence the success of emotion
classification. These include spectral characteristics of the speech signal transformed into
GTCC, along with AGTCC and A>’GTCC features. Next, we present the description and
computation of additional spectral features that complement the values of our feature vector.
The following section briefly outlines the operation of the Support Vector Machine classifier.

The final section presents the practical classification of speech utterance databases into
appropriate emotional classes, where the program for spectral feature extraction and emotional
speech classification into specific emotional categories was implemented in MATLAB, version
R2023b.

2. SPEECH CORPUS

We can confidently state that a certain percentage of the classification accuracy of a speech
emotion recognition classifier depends on the quality of the emotional speech database used for
training and testing, as well as on its degree of similarity with real-world emotional speech
samples. In this work, we used the SAVEE (Surrey Audio-Visual Expressed Emotion) database
and the Toronto Emotional Speech Set (TESS).

The SAVEE database was recorded from four native English speakers (identified as DC,
JE, JK, KL), all postgraduate students and researchers at the University of Surrey, aged between
27 and 31. Emotions are psychologically described in seven discrete classes; for this study we
employed five: anger, fear, happiness, sadness, and neutral speech. The textual material
consisted of sentences selected from the standard TIMIT! corpus, phonetically balanced for
each emotion.

The second emotional speech database is the Toronto Emotional Speech Set (TESS), a
popular speech corpus widely used in research on emotion recognition from speech. This
database was developed to enable the analysis of the effect of emotions on speech. It consists
of recordings of twelve sentences spoken by professional speakers. The sentences were
recorded to reflect seven basic emotions, of which we used five: happiness, sadness, anger, fear,
and neutral. The speakers were selected to cover different age groups, enabling research into

! The TIMIT corpus of read speech was designed to provide speech data for acoustic-phonetic studies and for the
development and evaluation of automatic speech recognition systems.
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the effect of age on the perception and recognition of emotions. The database contains a total of
2,800 audio samples (12 sentences x 7 emotions x 2 speakers x 100 repetitions), from which
we used only those sentences corresponding to the aforementioned five emotional states. The
recordings are provided in WAV format, with a standard sampling frequency of 44.1 kHz and
16-bit resolution. The sentences are short and standardized, which facilitates the analysis of
emotional content. However, the recordings were made under ideal acoustic conditions, which
may affect the model’s performance in real-world noisy environments.

3. FEATURE EXTRACTION

Feature extraction from the speech signal plays a crucial role in the process of classifying
emotional speech. The values of these features produce discriminative measures that determine
the level of classification performance. Therefore, selecting the right set of features is essential
to improve classification accuracy. In this study, we focus on the spectral properties of the

speech signal.
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Fig. 1 Block diagram of the process of feature extraction and classification of emotional speech

Figure 1 illustrates the process of extracting spectral features from the speech signal using a
gammatone filter bank based on the Equivalent Rectangular Bandwidth (ERB) scale, as well as
certain frequency characteristics of speech. The spectral features are extracted from very short
time frames of the speech signal (on the order of 20-30 ms), thus representing local
characteristics. The GTCC spectral features capture only the short-term properties of the
signal in the frequency domain. Finally, based on the resulting feature vector - composed of
the aforementioned extracted spectral and frequency features the speech signal is classified into
the corresponding emotional class .

3.1. Gammatone Filter bank

The gammatone filter bank is a set of filters used to analyze the frequency spectrum of the
speech signal and is inspired by the way the human inner ear (cochlea) processes sound [2].
This approach models the mechanical and perceptual properties of the auditory system, which
makes it useful for audio-processing tasks such as feature extraction for speech or speech-
emotion recognition.
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The basis of the gammatone filter bank is the gammatone function. The filters in the
gammatone bank are based on the gammatone function, which is a time-domain function
defined as follows [6]:

g(t) = t" e 2Bt cos(2nf, t + ). )

where g(7) is the impulse response of the gammatone filter, ¢ is time, 7 is the filter order (typically
4 for modeling human hearing), B is the filter bandwidth (determined by the ERB - Equivalent
Rectangular Bandwidth — scale), . is the filter center frequency, and ¢ is the signal phase.
From the equation it follows that the function combines exponential decay with sinusoidal
oscillation.

Gammatone filters are distributed uniformly along the ERB scale, which accurately models
the resolution of human hearing. The ERB scale provides finer resolution at lower frequencies
compared to linear or logarithmically spaced scales such as the Mel scale. The ERB bandwidth
for a frequency f'can be calculated using the following formula:

1

n 7
ERB = [(Etf—rQ) + minBW“] , @)
where EarQ is the asymptotic quality factor of the filter at high frequencies, and minBW is the
minimum bandwidth at low frequencies. The filter quality (O-factor) is the ratio of its center
frequency to its bandwidth.

Several researchers have proposed different values for these parameters; however, the most
widely accepted values were given in [7], where EarQ = 1000 / (24.7 - 4.37), minBW = 24.7,
and n = 1. These parameter choices are mainly due to the larger quality factor achieved at lower

frequencies. The ERB for a filter with center frequency f- is defined as:
ERB(f) = 24.7 - (4.37 - £/1000 + 1). 3)

The Equivalent Rectangular Bandwidth (ERB) is a psychoacoustic measure of the
bandwidth of the auditory filter at each point along the cochlea [6] and corresponds to the
bandwidth BBB in equation (1). The filter bank covers the desired frequency range of the signal
(e.g., 20 Hz—8 kHz for speech). Each filter is centered on a specific center frequency and enables
the analysis of the energy within that band.

Signal filtering: the input signal is convolved with each filter in the bank. The result is a set
of time-domain signals that represent the energy in different frequency bands.

3.1.1. GTCC (Gammatone Cepstral Coefficients):

To compute GTCCs we first perform signal extraction. The speech signal is divided into
segments of N=512N = 512N=512 samples. The processing frames are 25 ms long and are
overlapped in time with a hop (frame shift) of 10 ms (in our work). Next, each frame is
windowed using a Hamming window. Windowing is the next step in the feature-extraction
chain and serves to smooth and consolidate nearby spectral lines. We then compute the FFT
(Fast Fourier Transform) for each window in order to obtain the spectrogram. The
gammatone filter bank is applied to the spectrum (Figure 2): gammatone filters are used to
filter the spectrum so that the filtered output represents the energy in each filter band. In our
implementation the gammatone filter bank contains 40 filters. Frequency-domain analysis
provides information about the energy distribution and formants, which are key cues for
speech and emotion recognition.
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To increase the dynamic range of the spectrum we take the logarithm of the energy - i.e.,
for each filter we compute the log-energy. Finally, applying the DCT to the vector of log-
energies yields the GTCC coefficients equation (4). Typically one retains the first N
coefficients; the choice of N depends on the intended application of the features (in our work
we use 12 coefficients).

GTCC,, = \/%Zﬁzl log( X,,) cos [7;]_11 (m— %)] 4)
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Fig. 2 ERB filter bank with amplitude response

In our feature vector we also include AGTCC and A’GTCC, which help capture the signal
dynamics and further improve emotion recognition. AGTCC are computed as follows:

YN_in(clt+n]—C[t-n])
Aclt] = B ©)

where C[{] is the GTCC at time step ¢, and N is the window size.
A’GTCC are given by the following equation:

yN_ n(AcC[t+n]-Ac[t-n])
ahele) = B ©)

For the purpose of recognizing emotional states in the speech signal, we will use 12 GTCC,
their first derivatives, and their accelerations (12 A and 12 AZ?), which amounts to a total of 36
coefficients.

The reason we decided to use GTCC coefficients in the feature vector instead of MFCC is
that GTCC coefficients are an improved, biologically inspired version of MFCC that better
models human auditory perception, as well as their noise robustness and ability to preserve
information in the low-frequency range, along with a better response for emotion classification.

Generally speaking, there are two main differences between MFCC and GTCC coefficients.
The obvious difference lies in the frequency scale. GTCC, which is based on the Equivalent
Rectangular Bandwidth (ERB) scale, has a finer resolution at low frequencies compared to
MFCC (mel scale). The second difference is the nonlinear rectification step before applying the
DCT (Discrete Cosine Transform). MFCC uses a logarithmic function, while GTCC uses a
cube root.



SVM-Based Emotion Recognition from Speech with GTCC and Frequency Features 23

Through careful examination of all the differences between MFCC and GTCC, it was
concluded that the nonlinear rectification primarily accounts for the differences in noise
robustness. Specifically, the cube root rectification provides greater feature robustness to noise
compared to the logarithm. The reason for the cube root's better robustness may be that some
speech data contains information across different energy levels. In a mixture with noise, there
are dominant units or segments in the time-frequency (7-F) domain that carry information about
this energy. The cube root operation makes the features scale-dependent (i.e., dependent on the
energy level) and helps preserve this information. On the other hand, the logarithmic operation
does not encode this information.

MFCC has been the most commonly used feature vector for emotional speech classification.
However, MFCC systems usually do not perform well when noise is present in the speech
signal. Noise distorts the extracted features, leading to an inconsistent probability calculation.
Therefore, GTCC yields more accurate results than MFCC.

3.2 Frequency characteristics of speech
3.2.1. Spectral Centroid

The spectral centroid quantifies the "center of mass" of the spectrum of an audio signal and
provides information about the dominant frequencies within a specific time window. It
describes the "center of gravity" of the frequency spectrum of an audio signal and indicates
where the dominant frequency in the signal is located. Intuitively, it is a measure that reflects
whether a sound appears "bright" (higher frequencies) or "dark" (lower frequencies).

The spectral centroid is mathematically defined, as the center of gravity of the magnitudes
by the following equation (7):

_ ISl G
C=NE oo M

where is fi the frequencies in the spectrum, [X(fi)| is the amplitude (magnitude) at the frequency
fi, N is the total number of frequencies. Different emotions, such as happiness, sadness or anger,
can have different spectra in the speech signal, which affects the value of the spectral centroid.
For example, anger contains a higher spectrum, which means a higher centroid, while sadness
contains a lower spectrum, which means a lower centroid.

3.2.2. Spectral Decrease

Spectral Decrease is a measure that quantifies how much the intensity of frequency
components decreases when moving from lower to higher frequencies. A low score indicates
that there is dominant energy at higher frequencies, while a higher score indicates that the
energy decreases toward higher frequencies. This frequency characteristic is based on spectral
energy analysis. It can be used to identify the tonality or "sharpness" of speech. Equation (8)

calculates the Spectral Decrease:
N |X[Kk]-X[1]|

SpectralDecrease = % ) (8)

where are they | X/k]| frequency component amplitudes &, N total number of frequency
components and |X[1]] amplitude of the first (lowest) frequency component. This feature
can be used to distinguish voices with pronounced fundamental frequencies (e.g. sad
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speech) from voices with a "sharper” tone (e.g. anger) and helps identify emotional states
that have specific spectral patterns.

3.2.3. Spectral Flux

Spectral Flux is a frequency characteristic that measures the change in spectral energy
between successive time frames. This feature belongs to the group of dynamic frequency
descriptors because it focuses on the variation in spectral energy over time, it provides an
analysis of the change in spectral energy, focusing on the temporal change, making it useful for
detecting dynamic aspects of speech. It is used to identify changes in pitch and intensity that are
specific to emotional speech. The spectral flux is calculated according to the following
formula (9):

SpectralFlux = Y ¥_, (X;41[k] — X, [k])2. )

where are they | X[k]| spectral amplitude of the frequency component £ in the current time
frame ¢, |X;+1[k]| spectral amplitude of the same frequency component in the next time
frame ¢#+1 1 N total number of frequency components.

3.2.4. Spectral Spread

Spectral Spread belongs to frequency characteristics and is used to quantify the spectrum
width of a signal. More precisely, it describes how far the frequency components of the
spectrum are from its center, i.e. spectral centroid. Spectral Spread measures the dispersion of
the frequency components of the spectrum around the spectral centroid. If the value of the
spread is small, the energy of the spectrum is concentrated around the center, while the large
value of the spread determines that the energy of the spectrum is spread over a wide frequency
range. Equation (10) calculates the Spectral Spread:

SN (FIK-fo)2 X [K] |2
>N IX[K]|2 : (10)

SpectralSpread = \/

where f[k] is frequency of the k-th component, £: is the spectral centroid, | X[k][*is the energy of
the k-th frequency component and N represents the number of frequency components. In
emotional speech, anger causes a larger spread due to high frequency components, while for
example sadness results in a smaller spread due to the dominance of lower frequencies.

3.2.5. Spectral Rolloff Point

Spectral Rolloff Point belongs to the frequency characteristics and is used to quantify the
energy content of the spectrum. It is a measure that identifies the frequency point below which
a certain percentage (the typical value used is 85%, but can be different depending on the
application) of the total energy of the spectrum. Let the spectral power of the signal be given by
P(f), where fis the frequency. The total spectrum energy is defined as in equation (11):

Erotat = X155 P(f). (11
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The spectral rolloff point frolloff satisfies the condition of equation (12):

fTO 0
S P(F) = @Erorar (12)

where f.c 1s maximum frequency, « is the selected threshold (e.g. 0.85 for 85% energy) and
rolloff is the frequency point at which the threshold is met. Emotional speech affects the roll-
off point, so that in anger the energy spreads towards higher frequencies, so the roll-off point is
higher, while for example in sadness the energy is concentrated in lower frequencies, so the
rolloff point is lower.

3.2.6. Spectral Slope

Spectral Slope belongs to the frequency characteristics and is used to describe the falling or
rising nature of the signal spectrum. This feature quantifies the slope of the spectral curve,
calculates the slope of the line that best approximates the amplitude spectrum in logarithmic
frequency space, i.c. measures the relationship between frequency and spectrum amplitude.
Spectral Slope is defined as in equation (13):

_ NY(frAR) =X fr- XAk

Slope = =\ s -Grr - (13)
where f is the amplitude of the component £, 4y is the amplitude of the component k, N is the
total number of components. A flat slope (close to zero) represents an even distribution of
energy. A negative slope means that energy is concentrated in lower frequencies, while a
positive slope means that energy increases towards higher frequencies. Anger or excitement
may show a steeper negative slope due to more intense low frequencies and sadness may have
a milder slope because the frequencies are more evenly distributed.

3.2.7. Spectral Crest

Spectral Crest belongs to the frequency characteristics and is used to describe the
concentration of energy in the signal spectrum. This characteristic measures the ratio between
the maximum amplitude of the spectrum and the total energy in the spectrum. Spectral Crest
quantifies how much energy is concentrated in high frequencies in the spectrum. It relates to the
distribution of energy across the frequency spectrum, as shown in equation (14):

max (A)
DICYEN

SpectralCrest = (14)

where A is the amplitude of the frequency components. A high Spectral Crest indicates a greater
concentration of energy in the higher frequencies. A low Spectral Crest indicates a more even
distribution of energy across the spectrum, which is characteristic of melodic or tonal sounds
like vowels. Anger and excitement often have high Spectral Crest values due to the increased
concentration of energy in the higher frequencies. Sadness and calm emotions can have lower
values due to a more even distribution of energy.
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4. SUPPORT VECTOR MACHINE CLASSIFIER (SVM)
4.1. Definition SVM

Support Vector Machines (SVM) are one of the most powerful classification algorithms.
The main idea of this algorithm is to find the optimal decision boundary (hyper-plane) that
maximally separates the classes in the data [17]. The Support Vector Machine (SVM) algorithm
performs classification by mapping a set of training samples from the input sample space Ry
(input space) into an n-dimensional space F' (feature space). It optimally separates the samples
into two classes. Once the sample vector x is mapped into space F using the function @, the
class to which the new vector @(x) belongs is determined in this new space. The hyper-plane
separates the classes and represents a linear separating function. The hyper-plane is a geometric
entity that divides the data space into two or more classes. The optimal hyper-plane is the one
with the maximum separation margin between the samples of the two classes. It separates two
separable subsets and is fully determined by specific vectors from both subsets, known as
support vectors. The margin is the distance between the hyper-plane and the closest points from
each class (known as support vectors). SVM aims to find the hyperplane with the maximum
margin, thereby achieving better generalization of the model. Support vectors are a subset of
data points that directly influence the position of the hyper-plane. All other points have no effect
on defining the decision boundary. A hyper-plane in n-dimensional space can be represented as
in equation (15):

vx+b=0. (15)

where w is the weight vector (hyper-plane direction), x input vector and b bias (hyper-plane
offset).
The goal is to minimize the function given in equation (16):

1
Llwlz, (16)
with a restriction given in equation (17)
yi(w - x; + b)2>1. (17)
where y;€ {—1,+1} is the class label.

4.2. Soft margin classifier

In cases where the vectors are not linearly separable, meaning the training set contains some
kind of "noise," a soft margin classifier is used. In this case, classification with a certain error in
the training samples is allowed, with the goal of minimizing this error.

When the data is not perfectly separable, the parameter C is used to balance between
maximizing the margin and minimizing errors given in equation (18):

Minimiziraj:%llwll2 +CYN. &, (18)
so that equation (19) holds:
yi(w-x; + b)>1 — & za sve i>0, (19)

where & is the size of the error for the i-th data.
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4.3. Kernel functions

If it is not possible to separate the data using the support vector machine (SVM) with the
soft margin approach, a so-called kernel function is employed. The basic idea of this method is
the application of a certain function (@), which maps the basic or input vector space into a
higher-dimensional space in which the data become linearly separable: x—®(x).

All statements about SVM still hold in higher dimensional space. When constructing a linear
hyperplane in a higher dimension space, when that plane is mapped back in the initial space, a
nonlinear separation is obtained. The problem is to find the kernel function. Any function that
satisfies Mercer's [15] theorem can represent a kernel function, that is, it can represent a scalar
product in a vector space. Using kernels with non-linear classification problems are solved as
linear ones (kernel trick) [14].

Several types of kernel functions are used by default:

= linear kernel given by equation (20):

K(x;,x;) = x[ x;. (20)
= polynomial kernel given by equation (21):
K(x,x) = (y-xx + r)d,y > 0. 20
= radial basis function (RBF) given by equation (22):
K(xl-,xj) = exp (—y”xi — x]-||2),y > 0. (22)
= sigmoidal kernel given by equation (23):
K(x;,x;) = tanh(y - x[x; + r)*. (23)

where v,  and d are kernel parameters [16] or hyperparameters. The given examples of kernel
functions are sufficient in solving most classification problems.

5. PRACTICAL WORK AND RESULTS

In this section we describe how we performed the classification of speech utterances for the
aforementioned emotional speech databases. The program for feature extraction and for
classifying emotional utterances into the corresponding emotional groups was implemented in
MATLAB R2023b. The first part of the code contains a module for loading emotional
utterances from the databases. Next, we split the total set of utterances into two groups. The
larger group, which is used for training the classifier, comprises 80% of the utterances, while
the smaller group, used for testing the classifier, comprises the remaining 20%. Both groups
contain an equal number of utterances for each emotional state. The next step in the
classification pipeline is the feature extraction procedure from the speech signal, which is
described in Section 3.

For feature extraction from the speech signal we used MATLAB’s audioFeatureExtractor
function. Processing frames were 25 ms long with 10 ms frame shift (i.e., frames were
overlapped). The ERB scale was used for the extraction of the mentioned spectral features. The
total number of feature vector dimensions is 44, consisting of 12 gtcc, 12 gtccDelta, 12
gteeDeltaDelta (36 GTCC-related coefficients) and 8 spectral features: spectralCentroid,
spectralDecrease, spectralFlux, spectralKurtosis, spectralSpread, spectralRolloffPoint,
spectralSlope, and spectralCrest.
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After feature extraction, the next software module trains the classifier on the training
set. During this step the classifier’s model parameters are tuned in order to maximize
classification performance. The remaining data, referred to as the test set, are used to
estimate the error and to measure the classifier’s success on unseen data. Note that the test
error depends on the random partitioning of the corpus into training and test sets, and there
is also a risk of overfitting (excessive model adaptation to the training data).

To avoid such an undesirable situation, we used the k-fold cross-validation method.
This method randomly splits the available dataset into & equally sized parts, i.e. of length
n/k, where n is the total number of available samples. The chosen classifier is then trained
k times, each time using a different part as the test set. The overall error is the average of
the errors over the iterations. By randomly partitioning into k equal parts while preserving
class proportions, we obtain a stratified k-fold cross-validation, which ensures an adequate
representation of each class in the folds. In our work we used /0-fold cross-validation.

Our classifier model is an SVM based on the RBF (Gaussian) kernel (equation (23)),
where y denotes the kernel scale parameter (KernelScale). The BoxConstraint corresponds
to the regularization parameter C and it was set to 1. This parameter controls the ,,hardness*
of the margin: larger values of C can lead to overfitting, while smaller values increase
tolerance to misclassification.

The parameter that controls the width of the Gaussian kernel-commonly denoted v,
which is critical for the performance of a Gaussian SVM. The Standardize option was set
to true so that MATLAB automatically standardizes the feature values prior to model
training. To achieve the best possible performance, hyperparameter tuning is recommended. In
MATLAB we used fitcecoc with automatic hyperparameter optimization to find the
optimal pair (BoxConstraint, KernelScale).

For classification of emotional speech utterances we evaluated both an SVM without
hyperparameter optimization and an SVM with hyperparameter optimization. The
hyperparameter-optimized classifier demonstrated substantially improved classification
performance, as evidenced in the following figures and tables presented in the paper.

Here are the classification results for the Toronto Emotional Speech Set (TESS) using
an SVM classifier without hyper-parameter optimization.

Figure 3 shows the confusion matrix for the classification of speech utterances from the
TESS database into their corresponding emotional classes, without hyper-parameter
optimization. The validation accuracy of the classifier was 76.375%, while the model's
accuracy was 80.5%.

Anger

Fear

Happiness

Neutral

True Class

Sadness

25.6% 25.6% 211% 19.7% 2.8%

Anger Fear Happiness ~ Neutral Sadness
Predicted Class

Fig. 3 Classification accuracy of the SVM model on the TESS dataset without hyper-
parameter optimization (Confusion Matrix)
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Happiness

Neutral

True Class

Sadness

8.2% 5.0% 6.4% 28% 1.3%

Anger Fear Happiness Neutral Sadness
Predicted Class

Fig. 4 Classification accuracy of the SVM model on the TESS dataset with hyper-parameter
optimization (Confusion Matrix)

Figure 4 shows the confusion matrix for the classification of utterances from the TESS
speech corpus obtained with hyper-parameter optimization. The classifier achieved a
validation accuracy of 91.6875%, while the final model accuracy was 95.25%.

The MATLAB function fitcecoc was used to train SVM classifiers for multi-class
classification via the Error-Correcting Output Codes (ECOC) strategy. This function supports
hyperparameter optimization, including tuning of BoxConstraint and KernelScale.

The BoxConstraint hyperparameter (the regularization parameter C) controls the trade-
off between training accuracy and generalization to unseen data: a high BoxConstraint
allows a more complex decision boundary that emphasizes correct classification on the
training set but may lead to overfitting, whereas a low BoxConstraint yields a simpler
boundary that tolerates some training errors and is generally more robust to noise and better
at generalizing.

The KernelScale hyper-parameter scales the RBF (radial basis function) kernel: larger
values correspond to a wider kernel (smoother, more global decision regions), while
smaller values focus the model on more local structure in the data. The maximum number
of hyperparameter optimization iterations was set to 40.

The classification of speech utterances for the SAVEE (Surrey Audio-Visual Expressed
Emotion) database without hyper-parameter optimization is given by the confusion matrix
in Figure 5.

Anger

Fear

Happiness

Neutral

True Class

Sadness

100.0% 100.0% 83.3%

16.7% 20.0%

Anger Fear Happiness Neutral Sadness
Predicted Class

Fig. 5 Classification accuracy of the SVM model on the SAVEE dataset without hyper-
parameter optimization (Confusion Matrix)
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Following the classification process, the validation accuracy of the classifier was
93.75%, and the model accuracy was 94.5833%.

Anger

Fear

Happiness

Neutral

True Class

Sadness

8.3% 14.3%

Anger Fear Happiness  Neutral Sadness
Predicted Class

Fig. 6 Classification accuracy of the SVM model on the SAVEE dataset with hyper-
parameter optimization (Confusion Matrix)

Figure 6 shows the confusion matrix for the classification of speech utterances from the
SAVEE database with hyper-parameter optimization, resulting in a classifier validation
accuracy of 96.6667% and a model accuracy of 95.0000%.

After classification, we evaluated the classifier’s performance using the following
measures: Accuracy (Accuracy measures the overall percentage of correctly classified
samples, i.e., how often the model was correct), equation (25); Precision (Precision measures,
of all samples classified as positive, how many truly belong to the positive class), equation
(26); Recall (Recall measures how many of the truly positive samples the model successfully
detected), equation (27); and the F1 score (the F1 score is the harmonic mean of precision
and recall), equation (28).

Number of correctly classified samples — TP+TN (25)
Total number of samples TP+TN+FP+FN

where TP (True Positives) correctly classified positive samples; TN (True Negatives)

correctly classified negative samples; FP (False Positives) negative samples incorrectly

classified as positive; and FN (False Negatives) positive samples incorrectly classified as

negative.

Accuracy =

TP

Precision = . (26)
TP+FP

Recall = ——. Q27)
TP+FN

F1 Score = 2 Precision-Recall ) (28)

Precision+Recall
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Table 1 Performance evaluation of the classifier for the TESS database with hyper-
parameter optimization

Emotional Precision Recall F1-score Accuracy
class by class by class by class in %
'Anger’ 0.9176 0.9750 0.9455 0.9775
'Happiness' 0.9500 0.9500 0.9500 0.9800
'Sadness' 0.9359 0.9125 0.9241 0.9700
'Fear' 0.9744 0.9500 0.9620 0.9850
'Neutral' 0.9873 0.9750 0.9600 0.9925
Total: 0.95305 0.95250 0.95253 0.98100

Table 2 Performance evaluation of the classifier for the SAVEE database with hyper-
parameter optimization

Emotional Precision Recall F1-score Accuracy
class by class by class by class in %
'Anger’ 1.0000 1.0000 1.0000 1.0000
'Happiness' 0.9167 0.9167 0.9167 0.9667
'Sadness' 1.0000 0.9167 0.9565 0.9833
'Fear' 1.0000 0.9167 0.9565 0.9833
'Neutral' 0.8571 1.0000 0.9231 0.9667
Total: 0.95476 0.95000 0.95056 0.98000

We performed classification without classifier hyper-parameter optimization on the
speech utterances from both databases (SAVEE and TESS) and obtained a confusion
matrix (Figure 7). The validation accuracy of the classifier was 75.7609%, while the model
accuracy was 81.7391%.

Anger 25.0%

Fear 17.4%

Happiness 16.3%

Neutral 14.1%

True Class

Sadness 18.5%

16.9% 15.6% 22.2% 25.5% 8.5%

Anger Fear  Happiness  Neutral  Sadness
Predicted Class

Fig. 7 Classification accuracy of the SVM model on the SAVEE+ TESS dataset without
hyper-parameter optimization (Confusion Matrix)

After optimizing the hyper-parameters for the SVM classifier (BoxConstraint and
KernelScale), we obtained a confusion matrix (Figure 8) and a validation accuracy of
93.0435%, with a model accuracy of 95.2174%.
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Happiness

Neutral

True Class

Sadness

7.4% 9.5% 3.3% 2.2% 1.1%

Anger Fear Happiness  Neutral Sadness
Predicted Class

Fig. 8 Classification accuracy of the SVM model on the SAVEE+ TESS dataset with hyper-
parameter optimization (Confusion Matrix)

Table 3 Performance evaluation of the classifier for the SAVEE+TESS database with
hyper-parameter optimization

Emotional Precision Recall F1-score Accuracy
class by class by class by class in %
'Anger’ 0.9255 0.9457 0.9355 0.9739
'Happiness' 0.9053 0.9348 0.9198 0.9674
'Sadness' 0.9670 0.9565 0.9617 0.9848
'Fear' 0.9778 0.9565 0.9670 0.9870
'Neutral' 0.9889 0.9674 0.9780 0.9913
TOTAL: 0.9529 0.95217 0.95241 0.98087

Table 3 presents the performance evaluation results of the classifier for the combined
SAVEE+TESS speech utterance databases.

Few studies have addressed the construction of feature vectors for training and testing
emotion recognition and classification from speech signals using GTCC in combination
with other features. Our results clearly demonstrate that the proposed classifier achieved
superior emotion recognition performance on speech utterances compared to the works reported
in [22] and [23]. Furthermore, it exhibited higher classification accuracy than approaches based
on advanced deep learning architectures, such as the Deep Convolutional Recurrent Neural
Network (Deep C-RNN) applied to composite feature sets comprising Mel-Frequency Cepstral
Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) [24].

6. CONCLUSION

This paper presents an SVM-based emotional speech classification model whose hyper-
parameters are optimized during training. The feature vector comprises spectral and
frequency-based characteristics of the speech signal. The classification model uses GTCC
together with their first and second derivatives (AGTCC and A*>GTCC), which represent
short-term spectral properties of the signal, alongside selected frequency-domain speech
features that we believe strongly contribute to improved emotion classification. These
coefficients condense frequency-domain information into a compact, discriminative
representation, which is crucial for emotion recognition. Frequency-domain analysis
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provides information about the energy distribution, which we exploit to recognize
emotions. Fundamentally, we are interested in the distribution of energy in the speech
signal because our classification is based on how something is said rather than what is said.
The proposed classifier was validated on two separate datasets (SAVEE and TESS) and on
a combined dataset (SAVEE+TESS), and it demonstrated solid classification performance
for emotional utterances.

Future work will focus on developing a hybrid emotion-classification model that
integrates acoustic and frequency-domain features. The model will consist of two parallel
branches for feature extraction and classification. The first branch will use a feature vector
composed of GTCC coefficients and the first three formants (F1-F3), and classification
will be performed by an SVM with optimized hyper-parameters. The second branch will
employ a prosodic feature vector (e.g., fundamental frequency, intensity, duration, ...) as
input to a neural network designed for classification. The final decision will be obtained
by decision-level fusion of the two classifiers’ outputs. We expect that the proposed hybrid
architecture, through the complementarity of the features, will yield measurable
improvements in accuracy compared to unimodal approaches.

A second research direction involves the development of a multimodal model for
emotional speech classification. This approach would integrate acoustic speech features
(e.g., spectral and prosodic) with facial-expression features. The synergistic combination
of these complementary modalities would enable the model to overcome the limitations of
unimodal systems and is expected to result in significant improvements in accuracy and
robustness.

To improve the robustness of emotion classifiers in real-world noisy environments, the
training database needs to be substantially expanded. Key directions for improvement include:
(1) diversifying the speech corpus with a larger number of samples, words, and sentences;
(2) explicitly including recordings with background noise; and (3) recruiting a larger and more
diverse set of speakers so the model can better generalize across different voices.
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