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Abstract. When a person is in a certain emotional state, a large number of physiological 

changes occur in the body. These changes significantly affect the way words are 

pronounced compared to neutral speech. This means that the configuration of the vocal 

tract changes depending on the speaker’s emotional state. Furthermore, in emotional 

speech, physiological changes influence certain speech properties, such as speech rate, 

intensity, and pitchSuccessful classification of emotional speech into the appropriate 

emotion class requires extraction of salient speech features and construction of a feature 

vector composed of discriminative attributes that facilitate accurate classification. In this 

study, we use Gammatone Cepstral Coefficients (GTCC) as components of the feature 

vector for speech emotion recognition. GTCC are a biologically inspired modification of 

Mel-Frequency Cepstral Coefficients (MFCC). They are based on gammatone filters, 

which simulate the human auditory system more effectively than the mel-frequency filters 

used in MFCCThe remainder of the feature vector is composed of spectral characteristics 

extracted from the speech signal. In our classification model, the components of the 

feature vector are primarily extracted by performing spectral analysis on short-time 

frames of the observed speech signal. Feature vectors constitute discriminative 

representations that facilitate the more effective classification of speech into 

corresponding emotional categories. Our classifier is based on Support Vector Machines 

(SVM), with optimized hyper-parameters. 
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1. INTRODUCTION 

The vocal tract spectrally shapes the excitation signal generated by the vocal folds and 

thereby functions as a spectral filter. Changes in the geometric shape of the vocal tract determine 

which spectral components will be amplified and which will be attenuated. A word spoken by 

the same speaker is never pronounced in exactly the same way, meaning that the feature vectors 

of the spoken word are never one hundred percent identical. This variability is largely 

influenced by differences in the speaker’s emotional and health state, various psychophysical 

conditions, as well as age. The intensity of emotion, for each speaker, represents an individual 

characteristic of their expressive style for conveying that emotion. 

Speech is a non-stationary random signal, which means that its statistical properties change 

over time. The reason for this is that structures such as the shape of the vocal tract, the position 

of the tongue, and the shape of the mouth are variable, i.e., the elements that produce speech are 

themselves non-stationary and inherit variability from the structures that generate them. Since 

the shape of the vocal tract is also a variable factor, the features describing it are dynamic as 

well. The variability of the vocal tract shape is conditioned by emotional state, social factors, 

aging, health condition, psychophysical state, and ultimately by the act of speaking itself. 

The most significant features of the vocal tract, according to the majority of authors who 

have studied its analysis [8][9][10][11], are pitch (fundamental frequency), speech signal 

energy, MFCC features, and spectral harmonics. 

The frequency characteristics of the speech signal largely depend on the shape of the vocal 

tract. Based on this observation, the feature vector in this work is composed of the frequency 

characteristics of the speech signal. The remaining part of the feature vector is constructed using 

Gammatone Cepstral Coefficients (GTCC). These coefficients are derived from a gammatone 

filter bank based on the Equivalent Rectangular Bandwidth (ERB) scale, a type of filter bank 

that mimics the way the human auditory system processes sound. GTCCs are used to capture 

the spectral characteristics of speech signals. The computation of the proposed gammatone 

cepstral coefficients is performed in a similar manner to MFCC extraction. 

In [1], GTCC coefficients demonstrated superior performance in classifying emotional 

speech in noisy environments. Some studies have shown that Gammatone Cepstral Coefficients 

(GTCC) can provide equal or even better performance than MFCC due to the improved filter 

response characteristics [3][4][5]. The implementation of an emotion recognition model should 

be “robust” against noise factors, since failure to satisfy this condition directly affects classifier 

accuracy [12][13]. Using a classifier whose feature vector includes GTCC rather than MFCC 

yields better results when classifying speech utterances recorded in noisy conditions. 

In our work we used a traditional SVM classifier, which achieved a respectable 

classification accuracy. In recent years, research on emotion recognition from speech has 

predominantly employed neural networks as classifiers to map speech signals into emotional 

categories. For example, Prabhakar et al. [20] developed a multi-channel CNN–BLSTM 

architecture with an attention mechanism for speaker-independent SER, taking into account 

both phase and magnitude spectral features. Phase features were extracted using the Modified 

Group Delay Function (MODGD) and combined with MFCC features. The IEMOCAP dataset 

was used for performance evaluation, and the experimental results demonstrated improvements 

over MFCC-based and other existing unimodal SER approaches. 

Hama Saeed [21] proposed a DNN-based SER approach organized into three stages: feature 

extraction, normalization, and emotion recognition. From the audio signals, MFCC, Mel-

spectrogram, chroma and polynomial (poly) features were extracted. SMOTE was used to 
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augment minority classes and Min–Max scaling for normalization. The DNN model was 

evaluated on three commonly used languages (German, English, and French) using the EMO-

DB, SAVEE and CaFE corpora, achieving strong results: 95% on EMO-DB, 90% on SAVEE 

and 92% on CaFE. 

Alluhaidan et al. [22] proposed a combination of MFCCs with time-domain features 

(denoted MFCCT). Using CNNs, the hybrid MFCCT features demonstrated remarkable 

effectiveness, outperforming both MFCC and time-domain features on benchmark datasets 

such as Emo-DB, SAVEE and RAVDESS, with accuracies of 97%, 93% and 92%, 

respectively. 

The significance of this study lies in the fact that a unique feature vector was created, used 

for the first time in the literature, consisting of GTCC values combined with selected spectral 

features. Classification performance based on this feature vector demonstrated a high degree of 

accuracy in assigning emotional speech to the corresponding emotional class. 

In the second chapter, we describe the speech databases used for training and testing our 

emotional speech classifier. This is followed by a section describing the Gammatone Filter Bank 

and the methods of extracting emotional speech features that influence the success of emotion 

classification. These include spectral characteristics of the speech signal transformed into 

GTCC, along with ΔGTCC and Δ²GTCC features. Next, we present the description and 

computation of additional spectral features that complement the values of our feature vector. 

The following section briefly outlines the operation of the Support Vector Machine classifier.  

The final section presents the practical classification of speech utterance databases into 

appropriate emotional classes, where the program for spectral feature extraction and emotional 

speech classification into specific emotional categories was implemented in MATLAB, version 

R2023b. 

2. SPEECH CORPUS 

We can confidently state that a certain percentage of the classification accuracy of a speech 

emotion recognition classifier depends on the quality of the emotional speech database used for 

training and testing, as well as on its degree of similarity with real-world emotional speech 

samples. In this work, we used the SAVEE (Surrey Audio-Visual Expressed Emotion) database 

and the Toronto Emotional Speech Set (TESS). 

The SAVEE database was recorded from four native English speakers (identified as DC, 

JE, JK, KL), all postgraduate students and researchers at the University of Surrey, aged between 

27 and 31. Emotions are psychologically described in seven discrete classes; for this study we 

employed five: anger, fear, happiness, sadness, and neutral speech. The textual material 

consisted of sentences selected from the standard TIMIT1 corpus, phonetically balanced for 

each emotion. 

The second emotional speech database is the Toronto Emotional Speech Set (TESS), a 

popular speech corpus widely used in research on emotion recognition from speech. This 

database was developed to enable the analysis of the effect of emotions on speech. It consists 

of recordings of twelve sentences spoken by professional speakers. The sentences were 

recorded to reflect seven basic emotions, of which we used five: happiness, sadness, anger, fear, 

and neutral. The speakers were selected to cover different age groups, enabling research into 

 
1 The TIMIT corpus of read speech was designed to provide speech data for acoustic-phonetic studies and for the 

development and evaluation of automatic speech recognition systems. 
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the effect of age on the perception and recognition of emotions. The database contains a total of 

2,800 audio samples (12 sentences × 7 emotions × 2 speakers × 100 repetitions), from which 

we used only those sentences corresponding to the aforementioned five emotional states. The 

recordings are provided in WAV format, with a standard sampling frequency of 44.1 kHz and 

16-bit resolution. The sentences are short and standardized, which facilitates the analysis of 

emotional content. However, the recordings were made under ideal acoustic conditions, which 

may affect the model’s performance in real-world noisy environments. 

3. FEATURE EXTRACTION 

Feature extraction from the speech signal plays a crucial role in the process of classifying 

emotional speech. The values of these features produce discriminative measures that determine 

the level of classification performance. Therefore, selecting the right set of features is essential 

to improve classification accuracy. In this study, we focus on the spectral properties of the 

speech signal. 

 
 

 
 

Fig. 1 Block diagram of the process of feature extraction and classification of emotional speech 

Figure 1 illustrates the process of extracting spectral features from the speech signal using a 

gammatone filter bank based on the Equivalent Rectangular Bandwidth (ERB) scale, as well as 

certain frequency characteristics of speech. The spectral features are extracted from very short  

time frames of the speech signal (on the order of 20–30 ms), thus representing local 

characteristics. The GTCC spectral features capture only the short-term properties of the 

signal in the frequency domain. Finally, based on the resulting feature vector - composed of 

the aforementioned extracted spectral and frequency features the speech signal is classified into 

the corresponding emotional class γ. 

3.1. Gammatone Filter bank 

The gammatone filter bank is a set of filters used to analyze the frequency spectrum of the 

speech signal and is inspired by the way the human inner ear (cochlea) processes sound [2]. 

This approach models the mechanical and perceptual properties of the auditory system, which 

makes it useful for audio-processing tasks such as feature extraction for speech or speech-

emotion recognition. 
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The basis of the gammatone filter bank is the gammatone function. The filters in the 

gammatone bank are based on the gammatone function, which is a time-domain function 

defined as follows [6]: 

𝑔(𝑡) = 𝑡𝑛−1𝑒−2𝜋𝐵𝑡 cos(2𝜋𝑓𝑐𝑡 + 𝜙).   (1) 

where g(t) is the impulse response of the gammatone filter, t is time, n is the filter order (typically 

4 for modeling human hearing), B is the filter bandwidth (determined by the ERB - Equivalent 

Rectangular Bandwidth — scale), fc is the filter center frequency, and ϕ is the signal phase. 

From the equation it follows that the function combines exponential decay with sinusoidal 

oscillation. 

Gammatone filters are distributed uniformly along the ERB scale, which accurately models 

the resolution of human hearing. The ERB scale provides finer resolution at lower frequencies 

compared to linear or logarithmically spaced scales such as the Mel scale. The ERB bandwidth 

for a frequency f can be calculated using the following formula: 

 𝐸𝑅𝐵 = [(
𝑓𝑐

𝐸𝑎𝑟𝑄
)
𝑛

+𝑚𝑖𝑛𝐵𝑊𝑛]

1

𝑛
, (2) 

where EarQ is the asymptotic quality factor of the filter at high frequencies, and minBW is the 

minimum bandwidth at low frequencies. The filter quality (Q-factor) is the ratio of its center 

frequency to its bandwidth.  

Several researchers have proposed different values for these parameters; however, the most 

widely accepted values were given in [7], where EarQ = 1000 / (24.7 ∙ 4.37), minBW = 24.7, 

and n = 1. These parameter choices are mainly due to the larger quality factor achieved at lower 

frequencies. The ERB for a filter with center frequency fc is defined as: 

 𝐸𝑅𝐵(𝑓) = 24.7 ⋅ (4.37 ⋅ 𝑓/1000 + 1). (3) 

The Equivalent Rectangular Bandwidth (ERB) is a psychoacoustic measure of the 

bandwidth of the auditory filter at each point along the cochlea [6] and corresponds to the 

bandwidth BBB in equation (1). The filter bank covers the desired frequency range of the signal 

(e.g., 20 Hz–8 kHz for speech). Each filter is centered on a specific center frequency and enables 

the analysis of the energy within that band. 

Signal filtering: the input signal is convolved with each filter in the bank. The result is a set 

of time-domain signals that represent the energy in different frequency bands. 

3.1.1. GTCC (Gammatone Cepstral Coefficients): 

To compute GTCCs we first perform signal extraction. The speech signal is divided into 

segments of N=512N = 512N=512 samples. The processing frames are 25 ms long and are 

overlapped in time with a hop (frame shift) of 10 ms (in our work). Next, each frame is 

windowed using a Hamming window. Windowing is the next step in the feature-extraction 

chain and serves to smooth and consolidate nearby spectral lines. We then compute the FFT 

(Fast Fourier Transform) for each window in order to obtain the spectrogram. The 

gammatone filter bank is applied to the spectrum (Figure 2): gammatone filters are used to 

filter the spectrum so that the filtered output represents the energy in each filter band. In our 

implementation the gammatone filter bank contains 40 filters. Frequency-domain analysis 

provides information about the energy distribution and formants, which are key cues for 

speech and emotion recognition. 
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To increase the dynamic range of the spectrum we take the logarithm of the energy - i.e., 

for each filter we compute the log-energy. Finally, applying the DCT to the vector of log-

energies yields the GTCC coefficients equation (4). Typically one retains the first N 

coefficients; the choice of N depends on the intended application of the features (in our work 

we use 12 coefficients). 

 𝐺𝑇𝐶𝐶𝑚 = √
2

𝑁
∑ log( 𝑋𝑛) cos [

𝜋𝑛

𝑁
(𝑚 −

1

2
)]𝑁

𝑛=1 . (4) 

 

 

Fig. 2 ERB filter bank with amplitude response 

In our feature vector we also include ΔGTCC and Δ²GTCC, which help capture the signal 

dynamics and further improve emotion recognition. ΔGTCC are computed as follows: 

 

 Δ𝐶[𝑡] =
∑ 𝑛(𝐶[𝑡+𝑛]−𝐶[𝑡−𝑛])𝑁
𝑛=1

2∑ 𝑛2𝑁
𝑛=1

. (5) 

 

where C[t] is the GTCC at time step t, and N is the window size. 

Δ²GTCC are given by the following equation: 

 Δ2𝐶[𝑡] =
∑ 𝑛(Δ𝐶[𝑡+𝑛]−Δ𝐶[𝑡−𝑛])𝑁
𝑛=1

2∑ 𝑛2𝑁
𝑛=1

. (6) 

For the purpose of recognizing emotional states in the speech signal, we will use 12 GTCC, 

their first derivatives, and their accelerations (12 Δ and 12 Δ²), which amounts to a total of 36 

coefficients. 

The reason we decided to use GTCC coefficients in the feature vector instead of MFCC is 

that GTCC coefficients are an improved, biologically inspired version of MFCC that better 

models human auditory perception, as well as their noise robustness and ability to preserve 

information in the low-frequency range, along with a better response for emotion classification. 

Generally speaking, there are two main differences between MFCC and GTCC coefficients. 

The obvious difference lies in the frequency scale. GTCC, which is based on the Equivalent 

Rectangular Bandwidth (ERB) scale, has a finer resolution at low frequencies compared to 

MFCC (mel scale). The second difference is the nonlinear rectification step before applying the 

DCT (Discrete Cosine Transform). MFCC uses a logarithmic function, while GTCC uses a 

cube root. 
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Through careful examination of all the differences between MFCC and GTCC, it was 

concluded that the nonlinear rectification primarily accounts for the differences in noise 

robustness. Specifically, the cube root rectification provides greater feature robustness to noise 

compared to the logarithm. The reason for the cube root's better robustness may be that some 

speech data contains information across different energy levels. In a mixture with noise, there 

are dominant units or segments in the time-frequency (T-F) domain that carry information about 

this energy. The cube root operation makes the features scale-dependent (i.e., dependent on the 

energy level) and helps preserve this information. On the other hand, the logarithmic operation 

does not encode this information. 

MFCC has been the most commonly used feature vector for emotional speech classification. 

However, MFCC systems usually do not perform well when noise is present in the speech 

signal. Noise distorts the extracted features, leading to an inconsistent probability calculation. 

Therefore, GTCC yields more accurate results than MFCC. 

3.2 Frequency characteristics of speech 

3.2.1. Spectral Centroid 

The spectral centroid quantifies the "center of mass" of the spectrum of an audio signal and 

provides information about the dominant frequencies within a specific time window. It 

describes the "center of gravity" of the frequency spectrum of an audio signal and indicates 

where the dominant frequency in the signal is located. Intuitively, it is a measure that reflects 

whether a sound appears "bright" (higher frequencies) or "dark" (lower frequencies). 

The spectral centroid is mathematically defined, as the center of gravity of the magnitudes 

by the following equation (7): 

𝐶 =
∑ 𝑓𝑖|𝑋(𝑓𝑖)|
𝑁
𝑖=1

∑ |𝑋(𝑓𝑖)|
𝑁
𝑖=1

 .    (7) 

 

where is fi the frequencies in the spectrum, |X(fi)| is the amplitude (magnitude) at the frequency 

fi, N is the total number of frequencies. Different emotions, such as happiness, sadness or anger, 

can have different spectra in the speech signal, which affects the value of the spectral centroid. 

For example, anger contains a higher spectrum, which means a higher centroid, while sadness 

contains a lower spectrum, which means a lower centroid. 

3.2.2. Spectral Decrease 

Spectral Decrease is a measure that quantifies how much the intensity of frequency 

components decreases when moving from lower to higher frequencies. A low score indicates 

that there is dominant energy at higher frequencies, while a higher score indicates that the 

energy decreases toward higher frequencies. This frequency characteristic is based on spectral 

energy analysis. It can be used to identify the tonality or "sharpness" of speech. Equation (8) 

calculates the Spectral Decrease: 

SpectralDecrease =
∑

|𝑋[𝑘]−𝑋[1]|

𝑘−1
𝑁
𝑘=2

∑ |𝑋[𝑘]|𝑁
𝑘=1

 .   (8) 

 

where are they | X[k]| frequency component amplitudes k, N total number of frequency 

components and ∣X[1]∣ amplitude of the first (lowest) frequency component. This feature 

can be used to distinguish voices with pronounced fundamental frequencies (e.g. sad 
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speech) from voices with a "sharper" tone (e.g. anger) and helps identify emotional states 

that have specific spectral patterns. 

3.2.3. Spectral Flux 

Spectral Flux is a frequency characteristic that measures the change in spectral energy 

between successive time frames. This feature belongs to the group of dynamic frequency 

descriptors because it focuses on the variation in spectral energy over time, it provides an 

analysis of the change in spectral energy, focusing on the temporal change, making it useful for 

detecting dynamic aspects of speech. It is used to identify changes in pitch and intensity that are 

specific to emotional speech. The spectral flux is calculated according to the following 

formula (9): 

SpectralFlux = ∑ (𝑋𝑡+1[𝑘] − 𝑋𝑡[𝑘])
2𝑁

𝑘=1 .   (9) 

 

where are they |Xt[k]| spectral amplitude of the frequency component k in the current time 

frame t, |Xt+1[k]| spectral amplitude of the same frequency component in the next time 

frame t+1 i N total number of frequency components. 

3.2.4. Spectral Spread 

Spectral Spread belongs to frequency characteristics and is used to quantify the spectrum 

width of a signal. More precisely, it describes how far the frequency components of the 

spectrum are from its center, i.e. spectral centroid. Spectral Spread measures the dispersion of 

the frequency components of the spectrum around the spectral centroid. If the value of the 

spread is small, the energy of the spectrum is concentrated around the center, while the large 

value of the spread determines that the energy of the spectrum is spread over a wide frequency 

range. Equation (10) calculates the Spectral Spread: 

 

SpectralSpread = √
∑ (𝑓[𝑘]−𝑓𝑐)

2|𝑋[𝑘]|2𝑁
𝑘=1

∑ |𝑋[𝑘]|2𝑁
𝑘=1

.   (10) 

 

where f[k] is frequency of the k-th component, fc is the spectral centroid, ∣X[k]∣2 is the energy of 

the k-th frequency component and N represents the number of frequency components. In 

emotional speech, anger causes a larger spread due to high frequency components, while for 

example sadness results in a smaller spread due to the dominance of lower frequencies. 

3.2.5. Spectral Rolloff Point 

Spectral Rolloff Point belongs to the frequency characteristics and is used to quantify the 

energy content of the spectrum. It is a measure that identifies the frequency point below which 

a certain percentage (the typical value used is 85%, but can be different depending on the 

application) of the total energy of the spectrum. Let the spectral power of the signal be given by 

P(f), where f is the frequency. The total spectrum energy is defined as in equation (11): 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃(𝑓)
𝑓𝑚𝑎𝑥
𝑓=0 .    (11) 
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The spectral rolloff point frolloff  satisfies the condition of equation (12): 

∑ 𝑃(𝑓) = 𝛼𝐸𝑡𝑜𝑡𝑎𝑙
𝑓𝑟𝑜𝑙𝑙𝑜𝑓𝑓
𝑓=0

 .   (12) 

where fmax is maximum frequency, α is the selected threshold (e.g. 0.85 for 85% energy) and 

rolloff is the frequency point at which the threshold is met. Emotional speech affects the roll-

off point, so that in anger the energy spreads towards higher frequencies, so the roll-off point is 

higher, while for example in sadness the energy is concentrated in lower frequencies, so the 

rolloff point is lower. 

3.2.6. Spectral Slope 

Spectral Slope belongs to the frequency characteristics and is used to describe the falling or 

rising nature of the signal spectrum. This feature quantifies the slope of the spectral curve, 

calculates the slope of the line that best approximates the amplitude spectrum in logarithmic 

frequency space, i.e. measures the relationship between frequency and spectrum amplitude. 

Spectral Slope is defined as in equation (13): 

 

Slope =
𝑁∑(𝑓𝑘𝐴𝑘)−∑𝑓𝑘∑𝐴𝑘

𝑁∑(𝑓𝑘
2)−(∑(𝑓𝑘))

2 .   (13) 

 

where fk is the amplitude of the component k, Ak is the amplitude of the component k, N is the 

total number of components. A flat slope (close to zero) represents an even distribution of 

energy. A negative slope means that energy is concentrated in lower frequencies, while a 

positive slope means that energy increases towards higher frequencies. Anger or excitement 

may show a steeper negative slope due to more intense low frequencies and sadness may have 

a milder slope because the frequencies are more evenly distributed. 

3.2.7. Spectral Crest 

Spectral Crest belongs to the frequency characteristics and is used to describe the 

concentration of energy in the signal spectrum. This characteristic measures the ratio between 

the maximum amplitude of the spectrum and the total energy in the spectrum. Spectral Crest 

quantifies how much energy is concentrated in high frequencies in the spectrum. It relates to the 

distribution of energy across the frequency spectrum, as shown in equation (14): 

 

SpectralCrest =
max⁡(𝐴)

∑(𝐴)
.    (14) 

 

where A is the amplitude of the frequency components. A high Spectral Crest indicates a greater 

concentration of energy in the higher frequencies. A low Spectral Crest indicates a more even 

distribution of energy across the spectrum, which is characteristic of melodic or tonal sounds 

like vowels. Anger and excitement often have high Spectral Crest values due to the increased 

concentration of energy in the higher frequencies. Sadness and calm emotions can have lower 

values due to a more even distribution of energy. 
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4. SUPPORT VECTOR MACHINE CLASSIFIER (SVM) 

4.1. Definition SVM 

Support Vector Machines (SVM) are one of the most powerful classification algorithms. 

The main idea of this algorithm is to find the optimal decision boundary (hyper-plane) that 

maximally separates the classes in the data [17]. The Support Vector Machine (SVM) algorithm 

performs classification by mapping a set of training samples from the input sample space RN 

(input space) into an n-dimensional space F (feature space). It optimally separates the samples 

into two classes. Once the sample vector x is mapped into space F using the function Φ, the 

class to which the new vector Φ(x) belongs is determined in this new space. The hyper-plane 

separates the classes and represents a linear separating function. The hyper-plane is a geometric 

entity that divides the data space into two or more classes. The optimal hyper-plane is the one 

with the maximum separation margin between the samples of the two classes. It separates two 

separable subsets and is fully determined by specific vectors from both subsets, known as 

support vectors. The margin is the distance between the hyper-plane and the closest points from 

each class (known as support vectors). SVM aims to find the hyperplane with the maximum 

margin, thereby achieving better generalization of the model. Support vectors are a subset of 

data points that directly influence the position of the hyper-plane. All other points have no effect 

on defining the decision boundary. A hyper-plane in n-dimensional space can be represented as 

in equation (15): 

 𝑣𝑥 + 𝑏 = 0. (15) 

where w is the weight vector (hyper-plane direction), x input vector and b bias (hyper-plane 

offset). 

The goal is to minimize the function given in equation (16): 

1

2
‖𝑤‖2,     (16) 

with a restriction given in equation (17) 

 

𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏)1.    (17) 

 

where yi∈{−1,+1} is the class label. 

4.2. Soft margin classifier 

In cases where the vectors are not linearly separable, meaning the training set contains some 

kind of "noise," a soft margin classifier is used. In this case, classification with a certain error in 

the training samples is allowed, with the goal of minimizing this error. 

When the data is not perfectly separable, the parameter C is used to balance between 

maximizing the margin and minimizing errors given in equation (18): 

 Minimiziraj:
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1  , (18) 

so that equation (19) holds: 

𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏)1 − 𝜉𝑖 ⁡𝑧𝑎⁡𝑠𝑣𝑒⁡⁡𝑖0 ,   (19) 

where ξi is the size of the error for the i-th data. 
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4.3. Kernel functions 

If it is not possible to separate the data using the support vector machine (SVM) with the 

soft margin approach, a so-called kernel function is employed. The basic idea of this method is 

the application of a certain function (Փ), which maps the basic or input vector space into a 

higher-dimensional space in which the data become linearly separable: x→Փ(x). 

All statements about SVM still hold in higher dimensional space. When constructing a linear 

hyperplane in a higher dimension space, when that plane is mapped back in the initial space, a 

nonlinear separation is obtained. The problem is to find the kernel function. Any function that 

satisfies Mercer's [15] theorem can represent a kernel function, that is, it can represent a scalar 

product in a vector space. Using kernels with non-linear classification problems are solved as 

linear ones (kernel trick) [14]. 

Several types of kernel functions are used by default: 

▪ linear kernel given by equation (20):  

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗.    (20) 

▪ polynomial kernel given by equation (21):  

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾 ∙ 𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
, 𝛾 > 0.   (21) 

▪ radial basis function (RBF) given by equation (22): 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) , 𝛾 > 0.  (22) 

▪ sigmoidal kernel given by equation (23):  

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝛾 ∙ 𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
.   (23) 

where , r and d are kernel parameters [16] or hyperparameters. The given examples of kernel 

functions are sufficient in solving most classification problems. 

5. PRACTICAL WORK AND RESULTS 

In this section we describe how we performed the classification of speech utterances for the 

aforementioned emotional speech databases. The program for feature extraction and for 

classifying emotional utterances into the corresponding emotional groups was implemented in 

MATLAB R2023b. The first part of the code contains a module for loading emotional 

utterances from the databases. Next, we split the total set of utterances into two groups. The 

larger group, which is used for training the classifier, comprises 80% of the utterances, while 

the smaller group, used for testing the classifier, comprises the remaining 20%. Both groups 

contain an equal number of utterances for each emotional state. The next step in the 

classification pipeline is the feature extraction procedure from the speech signal, which is 

described in Section 3. 

For feature extraction from the speech signal we used MATLAB’s audioFeatureExtractor 

function. Processing frames were 25 ms long with 10 ms frame shift (i.e., frames were 

overlapped). The ERB scale was used for the extraction of the mentioned spectral features. The 

total number of feature vector dimensions is 44, consisting of 12 gtcc, 12 gtccDelta, 12 

gtccDeltaDelta (36 GTCC-related coefficients) and 8 spectral features: spectralCentroid, 

spectralDecrease, spectralFlux, spectralKurtosis, spectralSpread, spectralRolloffPoint, 

spectralSlope, and spectralCrest. 
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After feature extraction, the next software module trains the classifier on the training 
set. During this step the classifier’s model parameters are tuned in order to maximize 
classification performance. The remaining data, referred to as the test set, are used to 
estimate the error and to measure the classifier’s success on unseen data. Note that the test 
error depends on the random partitioning of the corpus into training and test sets, and there 
is also a risk of overfitting (excessive model adaptation to the training data). 

To avoid such an undesirable situation, we used the k-fold cross-validation method. 
This method randomly splits the available dataset into k equally sized parts, i.e. of length 
n/k, where n is the total number of available samples. The chosen classifier is then trained 
k times, each time using a different part as the test set. The overall error is the average of 
the errors over the iterations. By randomly partitioning into k equal parts while preserving 
class proportions, we obtain a stratified k-fold cross-validation, which ensures an adequate 
representation of each class in the folds. In our work we used 10-fold cross-validation. 

Our classifier model is an SVM based on the RBF (Gaussian) kernel (equation (23)), 
where γ denotes the kernel scale parameter (KernelScale). The BoxConstraint corresponds 
to the regularization parameter C and it was set to 1. This parameter controls the „hardness“ 
of the margin: larger values of C can lead to overfitting, while smaller values increase 
tolerance to misclassification. 

The parameter that controls the width of the Gaussian kernel-commonly denoted γ, 
which is critical for the performance of a Gaussian SVM. The Standardize option was set 
to true so that MATLAB automatically standardizes the feature values prior to model 
training. To achieve the best possible performance, hyperparameter tuning is recommended. In 
MATLAB we used fitcecoc with automatic hyperparameter optimization to find the 
optimal pair (BoxConstraint, KernelScale). 

For classification of emotional speech utterances we evaluated both an SVM without 
hyperparameter optimization and an SVM with hyperparameter optimization. The 
hyperparameter-optimized classifier demonstrated substantially improved classification 
performance, as evidenced in the following figures and tables presented in the paper. 

Here are the classification results for the Toronto Emotional Speech Set (TESS) using 
an SVM classifier without hyper-parameter optimization. 

Figure 3 shows the confusion matrix for the classification of speech utterances from the 

TESS database into their corresponding emotional classes, without hyper-parameter 

optimization. The validation accuracy of the classifier was 76.375%, while the model's 

accuracy was 80.5%. 

 

Fig. 3 Classification accuracy of the SVM model on the TESS dataset without hyper-

parameter optimization (Confusion Matrix) 
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Fig. 4 Classification accuracy of the SVM model on the TESS dataset with hyper-parameter 

optimization (Confusion Matrix) 

Figure 4 shows the confusion matrix for the classification of utterances from the TESS 
speech corpus obtained with hyper-parameter optimization. The classifier achieved a 
validation accuracy of 91.6875%, while the final model accuracy was 95.25%. 

The MATLAB function fitcecoc was used to train SVM classifiers for multi-class 
classification via the Error-Correcting Output Codes (ECOC) strategy. This function supports 
hyperparameter optimization, including tuning of BoxConstraint and KernelScale.  

The BoxConstraint hyperparameter (the regularization parameter C) controls the trade-
off between training accuracy and generalization to unseen data: a high BoxConstraint 
allows a more complex decision boundary that emphasizes correct classification on the 
training set but may lead to overfitting, whereas a low BoxConstraint yields a simpler 
boundary that tolerates some training errors and is generally more robust to noise and better 
at generalizing.  

The KernelScale hyper-parameter scales the RBF (radial basis function) kernel: larger 
values correspond to a wider kernel (smoother, more global decision regions), while 
smaller values focus the model on more local structure in the data. The maximum number 
of hyperparameter optimization iterations was set to 40. 

The classification of speech utterances for the SAVEE (Surrey Audio-Visual Expressed 
Emotion) database without hyper-parameter optimization is given by the confusion matrix 
in Figure 5. 

 
 

Fig. 5 Classification accuracy of the SVM model on the SAVEE dataset without hyper-

parameter optimization (Confusion Matrix) 
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Following the classification process, the validation accuracy of the classifier was 

93.75%, and the model accuracy was 94.5833%. 

 

Fig. 6 Classification accuracy of the SVM model on the SAVEE dataset with hyper-

parameter optimization (Confusion Matrix) 

 

Figure 6 shows the confusion matrix for the classification of speech utterances from the 

SAVEE database with hyper-parameter optimization, resulting in a classifier validation 

accuracy of 96.6667% and a model accuracy of 95.0000%. 

After classification, we evaluated the classifier’s performance using the following 

measures: Accuracy (Accuracy measures the overall percentage of correctly classified 

samples, i.e., how often the model was correct), equation (25); Precision (Precision measures, 

of all samples classified as positive, how many truly belong to the positive class), equation 

(26); Recall (Recall measures how many of the truly positive samples the model successfully 

detected), equation (27); and the F1 score (the F1 score is the harmonic mean of precision 

and recall), equation (28). 

Accuracy =
Number⁡of⁡correctly⁡classified⁡samples

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 . (25) 

where TP (True Positives) correctly classified positive samples; TN (True Negatives) 

correctly classified negative samples; FP (False Positives) negative samples incorrectly 

classified as positive; and FN (False Negatives) positive samples incorrectly classified as 

negative. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.    (26) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.    (27) 

 

F1⁡Score = 2
Precision⋅Recall

Precision+Recall
  .   (28) 
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Table 1 Performance evaluation of the classifier for the TESS database with hyper-

parameter optimization 

Emotional 

class 

Precision 

by class 

Recall 

by class 

F1-score 

by class 

Accuracy 

in % 
'Anger' 0.9176 0.9750 0.9455 0.9775 

'Happiness' 0.9500 0.9500 0.9500 0.9800 

'Sadness' 0.9359 0.9125 0.9241 0.9700 

'Fear' 0.9744 0.9500 0.9620 0.9850 

'Neutral' 0.9873 0.9750 0.9600 0.9925 

Total: 0.95305 0.95250 0.95253 0.98100 

Table 2 Performance evaluation of the classifier for the SAVEE database with hyper-

parameter optimization 

Emotional 

class 

Precision 

by class 

Recall 

by class 

F1-score 

by class 

Accuracy 

in % 
'Anger' 1.0000 1.0000 1.0000 1.0000 

'Happiness' 0.9167 0.9167 0.9167 0.9667 

'Sadness' 1.0000 0.9167 0.9565 0.9833 

'Fear' 1.0000 0.9167 0.9565 0.9833 

'Neutral' 0.8571 1.0000 0.9231 0.9667 

Total: 0.95476 0.95000 0.95056 0.98000 

We performed classification without classifier hyper-parameter optimization on the 

speech utterances from both databases (SAVEE and TESS) and obtained a confusion 

matrix (Figure 7). The validation accuracy of the classifier was 75.7609%, while the model 

accuracy was 81.7391%. 
 

 
Fig. 7 Classification accuracy of the SVM model on the SAVEE+ TESS dataset without 

hyper-parameter optimization (Confusion Matrix) 

After optimizing the hyper-parameters for the SVM classifier (BoxConstraint and 

KernelScale), we obtained a confusion matrix (Figure 8) and a validation accuracy of 

93.0435%, with a model accuracy of 95.2174%. 
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Fig. 8 Classification accuracy of the SVM model on the SAVEE+ TESS dataset with hyper-

parameter optimization (Confusion Matrix) 

Table 3 Performance evaluation of the classifier for the SAVEE+TESS database with 

hyper-parameter optimization 

Emotional 

class 

Precision 

by class 

Recall 

by class 

F1-score 

by class 

Accuracy 

in % 
'Anger' 0.9255 0.9457 0.9355 0.9739 

'Happiness' 0.9053 0.9348 0.9198 0.9674 

'Sadness' 0.9670 0.9565 0.9617 0.9848 

'Fear' 0.9778 0.9565 0.9670 0.9870 

'Neutral' 0.9889 0.9674 0.9780 0.9913 

TOTAL: 0.9529 0.95217 0.95241 0.98087 

Table 3 presents the performance evaluation results of the classifier for the combined 

SAVEE+TESS speech utterance databases. 

Few studies have addressed the construction of feature vectors for training and testing 

emotion recognition and classification from speech signals using GTCC in combination 

with other features. Our results clearly demonstrate that the proposed classifier achieved 

superior emotion recognition performance on speech utterances compared to the works reported 

in [22] and [23]. Furthermore, it exhibited higher classification accuracy than approaches based 

on advanced deep learning architectures, such as the Deep Convolutional Recurrent Neural 

Network (Deep C-RNN) applied to composite feature sets comprising Mel-Frequency Cepstral 

Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) [24]. 

6. CONCLUSION 

This paper presents an SVM-based emotional speech classification model whose hyper-

parameters are optimized during training. The feature vector comprises spectral and 

frequency-based characteristics of the speech signal. The classification model uses GTCC 

together with their first and second derivatives (ΔGTCC and Δ²GTCC), which represent 

short-term spectral properties of the signal, alongside selected frequency-domain speech 

features that we believe strongly contribute to improved emotion classification. These 

coefficients condense frequency-domain information into a compact, discriminative 

representation, which is crucial for emotion recognition. Frequency-domain analysis 
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provides information about the energy distribution, which we exploit to recognize 

emotions. Fundamentally, we are interested in the distribution of energy in the speech 

signal because our classification is based on how something is said rather than what is said. 

The proposed classifier was validated on two separate datasets (SAVEE and TESS) and on 

a combined dataset (SAVEE+TESS), and it demonstrated solid classification performance 

for emotional utterances. 

Future work will focus on developing a hybrid emotion-classification model that 

integrates acoustic and frequency-domain features. The model will consist of two parallel 

branches for feature extraction and classification. The first branch will use a feature vector 

composed of GTCC coefficients and the first three formants (F1–F3), and classification 

will be performed by an SVM with optimized hyper-parameters. The second branch will 

employ a prosodic feature vector (e.g., fundamental frequency, intensity, duration, ...) as 

input to a neural network designed for classification. The final decision will be obtained 

by decision-level fusion of the two classifiers’ outputs. We expect that the proposed hybrid 

architecture, through the complementarity of the features, will yield measurable 

improvements in accuracy compared to unimodal approaches. 

A second research direction involves the development of a multimodal model for 

emotional speech classification. This approach would integrate acoustic speech features 

(e.g., spectral and prosodic) with facial-expression features. The synergistic combination 

of these complementary modalities would enable the model to overcome the limitations of 

unimodal systems and is expected to result in significant improvements in accuracy and 

robustness. 

To improve the robustness of emotion classifiers in real-world noisy environments, the 

training database needs to be substantially expanded. Key directions for improvement include: 

(1) diversifying the speech corpus with a larger number of samples, words, and sentences; 

(2) explicitly including recordings with background noise; and (3) recruiting a larger and more 

diverse set of speakers so the model can better generalize across different voices. 
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