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Abstract. Ultra-wideband (UWB) technology has emerged as a powerful solution for indoor
localization, offering high accuracy, low power consumption, and robust penetration through

obstacles. Among its applications, geofencing enables the creation of virtual boundaries for
monitoring and security purposes. This paper presents a novel one-class classification (OCC)

approach for UWB-based geofencing, named the k-Nearest Neighbours with Residual Norm

Threshold (kNN-RNT) algorithm. The proposed method utilizes fingerprinting and
trilateration techniques, operating in two distinct phases: an offline phase for constructing a

reference fingerprint database and an online phase for real-time classification of a mobile
tag’s location. The kNN-RNT algorithm determines geofence violations by analysing the
distribution of nearest fingerprints and computing a residual norm to classify locations. A

filtering mechanism enhances detection stability, mitigating noise and transient errors.

Experimental validation in a controlled indoor environment demonstrates the effectiveness of
the method, achieving over 99% accuracy within the geofenced area and significantly
reducing classification errors in proximity zones. The proposed approach provides a reliable
and efficient solution for real-time UWB-based geofencing applications.
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1. INTRODUCTION

Ultra-wideband (UWB) is a wireless communication technology that utilizes a wide
spectrum of frequencies to facilitate high-precision distance measurement and data
transmission [1]. In recent years, UWB has gained significant attention due to its unique
attributes, which make it particularly effective for radio-frequency-based indoor localization
[2]. This technology offers both fine-range resolution for accurate distance measurements
and high penetration capabilities, enabling signals to pass through various materials.
Furthermore, UWB demonstrates adaptability to diverse environments while maintaining
low power consumption, ensuring efficiency and sustainability. Importantly, its low-power
emissions present minimal risks to human health and privacy, positioning UWB as a safe and
versatile solution for a wide range of applications.

UWB technology excels in 2D and 3D positioning and tracking, particularly in
environments where GPS signals are unreliable, such as indoor or underground settings. In
industrial contexts, UWB enables precise tracking of equipment and materials, optimizing
workflow and inventory management. In healthcare, it facilitates real-time monitoring of
patients and medical assets, enhancing operational efficiency and safety. Furthermore, UWB
supports advanced home automation systems by enabling accurate localization of individuals
and objects, thus improving the responsiveness of smart devices. One of the key applications of
UWRB is geofencing, which establishes virtual boundaries within a physical space 3, 4]. The
geofencing is critical for scenarios such as ensuring equipment remains within designated
factory zones, alerting healthcare staff to patient movements beyond safe areas, or triggering
automated actions in smart homes based on occupants’ locations.

Geofencing, when treated as an indoor localization problem, can be effectively addressed
using one-class classification (OCC), a machine learning technique designed for scenarios
where only data from a single class is available [5, 6]. The OCC model is trained using offline
UWB measurements collected within the designated area, capturing signal characteristics such
as time-of-flight and received signal strength. These measurements define the reference class,
enabling the model to recognize authorized locations and detect anomalies in real time. Unlike
traditional multi-class classification, which distinguishes between predefined categories, OCC
learns the characteristics of the geofenced area without prior knowledge of outliers [7, 8].
Deviations, such as a target leaving (or entering) the area, are treated as anomalies. This
approach ensures reliable monitoring, allowing geofencing systems to detect and respond to
irregularities with high accuracy, enhancing security and spatial integrity.

This paper proposes the k-Nearest Neighbours with Residual Norm Threshold (KNN-RNT)
algorithm, a novel OCC method for UWB-based real-time tracking and geofencing. The kKNN-
RNT integrates fingerprinting and trilateration techniques to estimate the position of a mobile
tag relative to a predefined geofencing area, using a system of three fixed anchors. The method
operates in two phases: an offline phase, where a fingerprint database is constructed by scanning
a 2D zone to train a single-class model, and an online phase, where the model evaluates new
measurements to determine the tag’s location. A filtering mechanism further refines the
classification, enhancing detection reliability. Experimental results demonstrate the algorithm’s
effectiveness, achieving over 99% accuracy within the geofenced area and significantly
reducing error rates in surrounding zones, from 34% at 5 cm to less than 1% at 20 cm.

The remainder of this paper is organized as follows. Section 2 reviews related studies on
UWB-based indoor localization, focusing on geofencing and real-time tracking. Section 3
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introduces the system model, followed by the proposed method in Section 4. Experimental
results are discussed in Section 5, followed by conclusions in Section 6.

2. RELATED WORKS

Ultra-Wideband radio technology is widely recognized for its high temporal resolution and
ability to resolve individual multipath components. These characteristics make UWB highly
suitable for precise indoor distance measurements, making it a preferred choice for indoor
localization research [9-11]. One of the most comprehensive survey papers on UWB indoor
positioning is by Mazhar et al. [10], which provides an in-depth review of methods, algorithms,
and implementations used in UWB-based positioning systems. The paper also presents a
comparative analysis of UWB versus narrowband signals, demonstrating UWB’s superior
performance in complex indoor environments. Similarly, Campafia-Bastidas et al. [11] focus
on the application of UWB for indoor positioning, particularly for elderly monitoring. Their
study highlights the benefits of UWB’s high precision and reliability in ensuring safety within
indoor spaces.

Geofencing, which defines virtual boundaries within a physical space, depends on accurate
localization techniques to determine whether an entity is inside or outside a designated area.
Several recent studies have explored geofencing in indoor localization, as referenced in [12-17].
SIABR [16] takes a fingerprinting-based approach, constructing a location-specific fingerprint
database and using bi-directional models to infer user positions with high precision. Fidora [17]
investigates the use of channel state information (CSI) to create location-specific datasets for
training machine learning classifiers, enabling accurate geofencing predictions. Additionally,
[18] examines the integration of fingerprinting with UWB technology, leveraging UWB’s fine-
grained distance measurements to improve localization accuracy and reliability. Ardoin [19]
explores the feasibility of applying Radio Frequency Fingerprinting (RFF) to UWB devices and
assesses its generalizability across different environments. Furthermore, Malik et al. [20]
investigate UWB-based positioning and ranging techniques, utilizing the channel impulse
response (CIR) fingerprinting to enhance the localization accuracy.

One-Class Classification (OCC) has the potential to enhance geofencing applications by
distinguishing between normal and anomalous location data. By training OCC models on data
collected within the geofenced area, the system can effectively detect deviations, which may
indicate unauthorized access or unusual activity, thereby improving the geofencing security and
reliability. A comprehensive overview of OCC techniques is presented in [21], covering
methods such as One-Class Support Vector Machine (OCSVM), Support Vector Data
Descriptor (SVDD), One-Class Mini-Max Probability Machine, and Dual-Slope Mini-Max
Probability Machine. Additionally, [22] investigates the use of OCC, particularly SVDD, for
land cover classification from remotely sensed data. This study demonstrates how focusing on
a single target class allows for efficient classification even with limited training data,
highlighting the OCC’s potential for geofencing applications.
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3. SYSTEM MODEL

We consider a geofencing system deployed in a typical indoor environment with a complex
layout, such as an office, classroom, or residential space, featuring multiple obstacles of varying
sizes and shapes. Within this setting, the geofenced area is defined as a specific region, which
can take a rectangular or any other shape depending on the application requirements. The
localization infrastructure includes three anchor nodes situated at fixed and known positions,
strategically placed to maximize coverage and accuracy within the geofenced area. These
anchor nodes serve as reference points for the system. Additionally, there is a single mobile
target node that is to be tracked as it moves within the indoor space. The target node periodically
measures its distance to each anchor, and this data is used to determine whether it is inside or
outside the predefined geofenced area. To ensure high accuracy and reliability of the distance
measurements, it is required that a clear line-of-sight (LOS) condition is maintained
between the target node and all three anchor nodes while the target is located within or near
of the geofenced area. This assumption minimizes multipath effects and signal attenuation
caused by obstructions, which are common in indoor environments, and is essential for
achieving consistent geofencing performance using the UWB-based ranging.

The target and anchor nodes are implemented as UWB-enabled devices, which are
capable of performing the Two-Way Ranging (TWR) procedure. The term "ranging" refers
to the process of estimating the distance between two wireless devices measuring the signal
time-of-flight (ToF) between two UWB-enabled devices and then multiplying this time
measurement by the speed of light to obtain the distance. To facilitate accurate ToF
measurements, commercial UWB transceivers are equipped with specialized circuitry that
precisely timestamps the send and receive events at the physical level. Each UWB device
uses its own local clock to create these timestamps. Consequently, the ranging process
typically involves the exchange of three messages between the two UWB nodes, a method
known as the TWR procedure.

UWB Device 1 UWB Device 2
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Fig. 1 Two-Way Ranging procedure

The TWR procedure is presented in Fig. 1 and it works as follows:

1. UWB device 1 sends a message to the UWB device 2 (signal 1).

2. Upon receiving the message, UWB device 2 records the timestamp and immediately
sends a response back to UWB device 1 (signal 2).
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3. After receiving the response, UWB Device 1 sends another message to UWB Device 2
(Signal 3). This message contains all recorded timestamps from the previous signal
exchanges.

4. By analysing the timestamps from these message exchanges, the system can accurately
calculate the ToF according to Eq.1.

[, —1) =t —1,)]+[(ts —1,) - (5 —1,)]
Ty = 4 (M
The distance obtained through the TWR procedure represents the length of the shortest
signal path between the two devices, ideally corresponding to their true physical separation.
However, the accuracy of this measurement can be influenced by several factors, including
multipath propagation, signal interference, clock synchronization errors, and hardware
imperfections. In non-line-of-sight (NLOS) conditions, obstacles may cause signal reflections,
leading to overestimated distances due to elongated signal paths. Despite these challenges,
commercial UWB transceivers, such as those based on the IEEE 802.15.4a/z standard, typically
achieve distance measurement accuracy of +£10 cm under favourable conditions, with some
high-precision implementations reducing errors to as low as a few centimetres in optimal line-
of-sight scenarios, [23].

4. PROPOSED ZONE DETECTION METHOD

The proposed zone detection method is implemented using a two-phase approach,
consisting of an offline phase and an online phase.

4.1. Offline phase

The offline phase involves conducting a detailed site survey to build two distinct
fingerprint databases. The first dataset, referred to as the Interior Fingerprint Database
(IFD), is created by systematically moving the tag across the entire geofenced area,
ensuring a full coverage without any gaps. This database is later used during the online
phase to detect whether the tag is inside the designated area. IFD and BFD are illustrated
in Fig. 2. The second dataset, called the Boundary Fingerprint Database (BFD), is collected
by moving the tag precisely along the perimeter of the geofenced area. This database plays
a crucial role in training the system, as will be explained in a later section.

s sas2
::52 IFD g3 BFD

Fig. 2 Interior (IFD) and Boundary (BFD) Fingerprint Database
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We assume that the target node autonomously captures fingerprints through periodic
ranging rounds. The frequency of these ranging rounds is a configurable system parameter,
typically ranging from 10 to 50 rounds per second. In each ranging round, the target node
executes the TWR procedure with each anchor node individually, recording the resulting
range estimates as a raw fingerprint. Each raw fingerprint is represented as a vector,
f = (d;,d,, d3), where d; denotes the TWR-measured distance between the target node
and the i-th anchor. Since each point within the geofenced area corresponds to a unique
combination of three distances to the anchor nodes, raw fingerprints inherently encode the
tag’s location.

The collected raw fingerprints are used to construct two types of fingerprint databases:
plane and 2D. In the plane databases (IFD P and BFD P), fingerprints are stored in their
original form, preserving the raw distance measurements to three anchor nodes. In contrast,
the 2D databases (IFD 2D and BFD 2D) are created by mapping these distance
measurements to 2D spatial coordinates, f = (x,y), using a trilateration procedure based
on the known positions of the anchors. The trilateration is implemented via the least squares
method to minimize positional estimation errors. Both database types are supported by the
online detection method, allowing flexibility in geofencing scenarios. The method operates
independently of the chosen representation, utilizing the appropriate fingerprint format for
an accurate classification.

4.2. Online phase

During the online phase, the system's primary task is to determine whether the tag is
inside or outside the geofenced area based on real-time distance measurements and the IFD
database. The overall procedure is as follows. In the online phase, the tag periodically
generates distance vectors that represent its current position. If IFD 2D database is used,
each generated distance vector is transformed into 2D representation using trilateration
procedure. To assess the tag’s presence within the designated area, the system first employs
an OCC algorithm. The output of this algorithm is a numerical value correlated with the
tag’s distance from the geofenced area. By comparing this value against a predefined
threshold, the system produces a binary indication, signalling whether the tag is inside or
outside the area. To mitigate the effects of noise and anomalies, a sequence of binary
indications is processed through a filtering mechanism. The output of this filter provides
the final, reliable indication of the tag’s presence within the geofenced area. Next, we
provide a more detailed description of the three key components of the zone detection
method: the OCC algorithm, threshold determination, and the filtering mechanism.

For the zone detection, we employ our custom OCC algorithm, k-Nearest Neighbours
with Residual Norm Threshold, which evaluates the uniformity of fingerprint distribution
in proximity of the tag’s current position. The algorithm is illustrated in Fig. 3, where cross
marks represent three distinct tag positions: A (inside the geofenced area), B (on the
perimeter), and C (outside the area). Given an online distance vector, the algorithm first
identifies the k nearest fingerprints within the IFD database using Euclidean distance as the
metric for similarity. Each fingerprint is represented as a vector originating from the tag’s
position. These k vectors are then summed, forming a residual vector (red arrows in Fig.
3). The magnitude of the residual vector is referred to as the residual norm. When the tag
is inside the geofenced area, fingerprints from IFD are expected to be uniformly distributed
around it, resulting in a small residual norm. When the tag is near the perimeter, most IFD
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fingerprints will be concentrated on one side, leading to a moderate residual norm. If the
tag is outside the geofenced area, all nearby fingerprints will be located in similar directions
relative to the tag’s position, producing a large residual norm. The farther the tag moves
away from the geofenced area, the higher the residual norm becomes.
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Fig. 3 Illustration of KNN-RNT algorithm for /=3

Let formalize this procedure. The current tag position is represented by the distance
vector X = (x4, Xy, ..., X, ), While a fingerprint from IFD is denoted as f = (f3, f5, ..., fn)-
In the specific case of plane and 2D zone detection problems, where n = 3 andn = 2,
respectively, but we maintain an arbitrary n to highlight the generality of the method. Let,
N = {f;]i =1, ...k} be the set of k fingerprints in IFD nearest to the distance vector x. The
residual vector r = (1,13, ..., 1) is then computed as:

r=y =) )
The norm of the residual vector is given by:
o= o

Once the residual norm p is computed for a given distance vector, the tag's presence
within the geofenced area is determined by comparing p to a predefined threshold t.
Specifically, if p <t, the tag is considered to be inside the area; otherwise, it is classified
as outside.

The choice of the threshold value 7 is critical for ensuring the reliability of the detection
method. If T is set too high, the system may generate frequent false positives, incorrectly
classifying the tag as inside the zone when it is actually outside. Conversely, if 7 is too low,
false negatives will occur, failing to detect the tag’s presence within the geofenced area. The
optimal 7 value depends on the density and distribution of fingerprints in the IFD database
and cannot be selected independently of it. To determine an appropriate threshold, we utilize
the BFD database, which consists of fingerprints collected along the perimeter of the
geofenced area. At the perimeter, the tag's "inside/outside" status is ambiguous, meaning the
probability of obtaining a residual norm above or below the threshold should be equal. To
find such a threshold, we apply the kKNN-RNT algorithm to each fingerprint in the BFD
database and record the resulting residual norm values. These values are then sorted in
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ascending order, and the median value is chosen as 7. This approach ensures that half of the
BFD fingerprints are classified as "inside the zone" and the other half as "outside," balancing
the classification at the boundary.

To mitigate the impact of noisy distance measurements, the method incorporates a
filtering mechanism based on a shift-register-like data structure. This structure maintains
the L most recent binary indications, where a value of 1 signifies that the tag is inside the
zone, and 0 indicates that it is outside. The final decision regarding the tag’s presence is
determined by a hysteresis-based approach:

= The system declares the tag inside the zone once the number of 1s in the register

exceeds a predefined threshold T}.
=  Conversely, the system switches the tag’s status to outside the zone only when the
count of 1s drops below a lower threshold T, where T, < T;.

This dual-threshold strategy prevents rapid fluctuations in the detection output due to

the transient noise, ensuring a more stable and reliable classification.

5. IMPLEMENTATION AND EVALUATION

The experimental evaluation was conducted in a typical office environment using a
geofencing system with Ultra-Wideband technology. The testbed consists of four UWB nodes:
three fixed anchors and one target node. The anchor nodes were mounted 1.50 m above the floor
and strategically arranged in an equilateral triangle with side lengths 0f 4.10 m to ensure optimal
signal coverage within the geofenced area. The target node was attached to a movable tripod,
also positioned 1.50 m above the floor, allowing controlled movement across various positions
during the experiments. The system operates with a ranging interval of 20 measurements per
second, configured via onboard firmware settings. The ranging measurements were
wirelessly transmitted in real time to a laptop running a location server, where the zone detection
algorithm was implemented. The laptop was equipped with custom software, written in Python,
to process distance measurements, classify geofencing events, and log detection results for
further analysis.

We use the Murata Type 2AB UWB Evaluation Kits for our nodes [24]. This kit integrates
a Qorvo QM33120W UWB transceiver, a fully integrated impulse radio UWB wireless
transceiver built for precise distance measurement [23], along with a Nordic nRF52840
Bluetooth Low Energy SoC and UWB patch antennas, all on a single PCB. The power source
for all nodes consists of rechargeable lithium-ion batteries, ensuring stable voltage supply
throughout the experiments.

The fingerprint databases for the zone detection method are constructed by systematically
scanning the interior and perimeter of the geofencing area using the tag. The IFD databases
(IFD_P and IFD _2D) contain a total of 4200 fingerprints, while the BFD databases (BFD P
and BFD 2D) comprise 1200 fingerprints. The kNN-RNT OCC algorithm is configured with
k = 9, while the threshold parameter 7 is experimentally determined using the BFD databases,
as outlined in the previous section. Since the threshold value depends on the type of fingerprint
database, itis T = 0.48 for the IFD P database and 7 = 0.66 for the IFD 2D database. The
filtering mechanism utilizes a shift register of length L = 12, with upper and lower
thresholds set to T; = 12, and T, = 4, respectively.
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Fig. 4 Experimental setup for zone detection method

The operation of our evaluation testbed is characterized by two timing parameters: latency
and response time. Latency is defined as the time elapsed from the start of a ranging round at
the target node to the completion of the classification task by the location server for the
corresponding online fingerprint. The testbed provides a latency of 24ms or 26ms, depending
on whether a plane or 2D fingerprint database is used, respectively. This latency comprises:
a) the duration of the ranging round (20ms), b) the time required to transmit distance
measurements to the location server (2ms), and c) the classification time, which is 2ms for plane
fingerprints and 4ms for 2D fingerprints. The increased classification time for the 2D
fingerprint database is due to an additional trilateration step, which maps the three measured
distances to 2D spatial coordinates. The system response time is defined as the interval between
the occurrence of an event, such as the target node crossing a geofencing boundary, and the
moment the location server signals the event. This time is influenced by the duration of the
ranging interval and the parameters of a shift-register-based filtering mechanism. In the
adopted system configuration, the response time ranges from 50ms to 400ms, depending on
the current state of the shift-register data structure. This delay is acceptable for most
monitoring applications.

We conducted two sets of experiments to evaluate the accuracy and effectiveness of the
proposed zone detection method. First, we assessed the method's ability to accurately determine
whether the tag is inside or outside the geofencing area. Next, we examined its effectiveness in
detecting tag entry and exit events.

5.1. Zone detection accuracy

In this set of experiments, the tag was moved along predefined paths. The system’s “In/Out”
responses were recorded and subsequently processed to evaluate the accuracy of zone detection.
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Two metrics were utilized to assess the zone detection accuracy: In-Zone detection rate and
Out-Zone detection rate represent the percentage of instances where the target node is identified
as being within and outside the geofencing area, respectively. In the first experiment (denoted
as GA), the tag followed a random path within the geofencing area. Since the tag never left the
area, the expected In-Zone detection rate is 100%. In the second experiment (denoted as EZ),
the tag moved along the perimeter of the geofenced area, where the expected In-Zone and Out-
Zone detection rates are both 50%. For the next four experiments, the tag moved along
surrounding belts of the geofencing area at a fixed distance from the perimeter. These
experiments are labelled as BZx, where x € {5,10,15,20} denotes the distance in cm of the
tag from the perimeter. Ideally, the Out-Zone detection rate for these experiments should be
100%.

The Fig. 5 illustrates the fingerprints collected during these experiments. Each point
represents a 2D location derived by applying the trilateration procedure to a raw distance
fingerprint vector captured by the tag. Green points correspond to the IFD database, created
during the offline scanning of the geofencing area. The remaining points, distributed around the
area, were recorded during online testing as the tag was moved along predefined paths
surrounding the area. The clear separation between differently coloured points suggests the
potential for precise In-Zone/Out-Zone classification.

Collected fingerprints

25
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Fig. 5 Collected fingerprints in GA and at a fixed distance from the perimeter

The zone detection rate results, for both plane and 2D databases, are summarised in Table
1. For the case when the tag moves within the geofencing area (GA) the method shows almost
perfect zone detection accuracy of more than 99%. The very low Out-Zone rate of less than 1%
indicates that there are minimal false negatives, where the tag presence inside the geofencing
area are incorrectly identified as being outside. This high level of accuracy is crucial for
applications that rely on precise geofencing, ensuring that the target node's location is accurately
tracked and monitored within the designated area. The near-perfect 50/50% split between In-
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and Out-Zone rates in the EZ experiment is expected, as the threshold 7 is determined using tag
movements along the same path (i.e., the perimeter of the area) during the offline phase.

Table 1 Zone detection rate results for plane and 2D fingerprint databases

Plane fingerprint database 2D fingerprint database

In [%] 99.92 99.83
GA

Out [%] 0.08 0.17

In [%] 50.12 50.02
EZ

Out [%] 49.88 49.98

In [%] 34.93 33.65
BZ5

Out [%] 65.07 66.35

In [%] 19.89 12.38
BZ10

Out [%] 80.11 87.62

In [%] 7.82 2.41
BZ15

Out [%] 92.18 97.59

In [%] 5.31 0.66
BZ20

Out [%] 94.69 99.34

The zone detection rates for the BZx experiments indicate that the method is less confident
when the tag is outside the geofencing area. This is an expected result, as the KNN-RNT
algorithm is trained exclusively on fingerprints collected within the geofencing area, making it
more sensitive and accurate when detecting the tag inside the area than when it is outside. As
can be observed, the Out-Zone detection rate rises while the In-Zone detection rate falls as the
tag moves farther from the boundary, reflecting its proximity to the geofencing area. With the
plane fingerprint database, the Out-Zone detection rate rises from 65% at 5 cm from the
boundary to 95% at 20 ¢m. The accuracy is higher with the 2D fingerprint database, providing
an improvement of approximately 5% over the plane database. However, it is important to note
that the use of the 2D database is computationally more demanding, as it requires performing
the trilateration procedure for each sample.

In order to further validate the effectiveness of our kKNN-RNT algorithm, we conducted a
comparative analysis with three widely used OCC algorithms: One-Class Support Vector
Machine (One-Class SVM), Mahalanobis Distances, and Isolation Forest, presented in Table 2.
These algorithms are commonly employed for anomaly detection and spatial boundary tracking
in geofencing applications. For all algorithms, we used the same dataset to ensure consistency
in evaluation. Furthermore, to provide a fair comparison, we fine-tuned the parameters for each
method, optimizing them to achieve their best possible performance. This ensures that our
evaluation highlights the true capabilities of each approach under identical conditions.
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Table 2 Accuracy comparison of the kKNN-RNT algorithm with three standard one-class
classification methods

2D fingerprint database

Algorithm Hits [%]
KNN-RNT 99.83
GA One-Class SVM 99.64
Mabhalanobis Distances 99.64
Isolation Forest 99.40
KNN-RNT 66.35
BZ5 One-Class SVM 66.06
Mabhalanobis Distances 58.77
Isolation Forest 58.03
KNN-RNT 97.59
BZ15 One-Class SVM 91.30
Mabhalanobis Distances 95.01
Isolation Forest 91.21

The results presented in Table 2 demonstrate that KNN-RNT consistently outperforms all
baseline methods, achieving the highest hit rate across all test cases. As can be observed in the
BZS scenario, both Mahalanobis Distance and Isolation Forest exhibit a significantly lower
detection accuracy compared to One-Class SVM and kNN-RNT. However, while One-Class
SVM performs competitively when the target node is located just outside the geofencing area,
it consistently underperforms relative to kKNN-RNT in other scenarios, further highlighting the
robustness and superiority of our proposed method.

5.2. Real-time tracking results

In the second experiment, we aimed to emulate an application scenario for the proposed
zone detection method, where the system identifies and signals a tag’s entry into and exit from
the geofencing area. Signalling is facilitated by a speaker that emits a brief tone whenever the
tag enters or exits the area, with distinct frequencies assigned to the “enter” and “exit” tones.
For this experiment, the tag is moved along paths perpendicular to the geofencing area,
beginning approximately 30 cm outside its boundary. When the system emits the “entry” tone,
the tag’s current position is recorded as the entry point, and it continues moving toward a stop
point located about 30 cm within the geofencing area. The tag is then returned along the same
path to the starting point, and its position at the time of the “exit” tone is marked as the exit
point. This procedure is repeated multiple times across different paths around the geofencing
area.

The results of this experiment are illustrated in Fig. 6, showing recorded entry points
(red dots) and exit points (blue dots) for 42 entry-exit paths. The accuracy of entry-exit
detection varies along the area boundary due to multipath effects and interference, which
impact UWB distance measurements. These effects are particularly pronounced in complex
indoor environments, such as the space where the experiment was conducted. However,
the observed variations remain within the expected UWB ranging accuracy of £10 cm.
Note that all recorded entry and exit points are located outside the geofencing area. This is
because, in this experiment, we used the same threshold parameter T as in the previous
experiment, where it was optimized to minimize the Out-Zone detection rate for a tag
moving within the geofencing area. As a result, the system prioritizes reliable detection of
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the tag entering the area over detecting its exit. Practically, this means that the "entry" tone
is always triggered just before the tag enters the geofencing area but never when it is
already inside. Furthermore, the entry points remain relatively close to the area’s boundary,
with an average distance of 4.4 cm and a maximum of 8.5 cm. Exit points are consistently
farther from the boundary than entry points, averaging 7.8 cm with a maximum distance of
11.5 cm.

Real-time tracking

120 . . .
100 . .
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’ Exit points
.. Entry points
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-20 I S -

20 0 20 4 & 8 100 120 140
Fig. 6 Entry (red dots) and exit points (blue dots) obtained in real-time tracking experiment

The results of the tracking experiment suggest that reducing the threshold parameter t
could balance entry-exit detection accuracies. The expected effect would be shifting both
entry and exit points closer to the geofencing boundary. Another source of entry-exit
detection inaccuracy is the delay introduced by the filtering mechanism, which adds a
latency of up to 8 samples when transitioning between in-zone and out-zone states, and
vice versa. This delay, when multiplied by the tag’s speed, translates into the spatial
separation between entry and exit points along the same path. Reducing the length of the
shift register could minimize this entry-exit discrepancy, but it may also increase variations
in the detected distances from the area’s boundary. However, in this paper, we do not
further explore potential tracking optimizations related to the threshold parameter 7 or
shift-register length.

6. CONCLUSIONS

This paper introduces the KNN-RNT algorithm, a novel OCC-based approach for real-
time UWB geofencing. By utilizing fingerprinting and trilateration, the method effectively
distinguishes between authorized and unauthorized locations using a residual norm
thresholding mechanism. The two-phase operation ensures a robust geofence enforcement,
with an offline phase constructing a reference fingerprint database and an online phase
performing the real-time classification. Experimental results validate the high accuracy and
reliability of the proposed approach, achieving over 99% detection accuracy within the
geofenced zone. Furthermore, the method significantly reduces misclassification rates in
transition areas by employing an adaptive thresholding strategy and a filtering mechanism.
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The results showed a significant decrease in accuracy error, from 34% for the belt zone at
5 cm to less than 1% for the belt zone at 20 cm. The findings demonstrate the potential of
KNN-RNT for applications in security, industrial automation, healthcare, and smart
environments, offering a scalable and efficient geofencing solution for indoor localization
systems.

Building on these promising results, future work will address practical deployment
challenges. Although the proposed kNN-RNT algorithm demonstrates high accuracy in
geofenced zone detection, its performance may be impacted by environmental factors such
as multipath propagation, signal interference, and non-line-of-sight conditions, which can
introduce variations in ranging precision. To enhance robustness under such conditions,
we plan to explore dynamic geofencing techniques, in which adaptive models update
fingerprints in response to environmental changes.
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