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Abstract. Ultra-wideband (UWB) technology has emerged as a powerful solution for indoor 

localization, offering high accuracy, low power consumption, and robust penetration through 

obstacles. Among its applications, geofencing enables the creation of virtual boundaries for 

monitoring and security purposes. This paper presents a novel one-class classification (OCC) 

approach for UWB-based geofencing, named the k-Nearest Neighbours with Residual Norm 

Threshold (kNN-RNT) algorithm. The proposed method utilizes fingerprinting and 

trilateration techniques, operating in two distinct phases: an offline phase for constructing a 

reference fingerprint database and an online phase for real-time classification of a mobile 

tag’s location. The kNN-RNT algorithm determines geofence violations by analysing the 

distribution of nearest fingerprints and computing a residual norm to classify locations. A 

filtering mechanism enhances detection stability, mitigating noise and transient errors. 

Experimental validation in a controlled indoor environment demonstrates the effectiveness of 

the method, achieving over 99% accuracy within the geofenced area and significantly 

reducing classification errors in proximity zones. The proposed approach provides a reliable 

and efficient solution for real-time UWB-based geofencing applications.  

Key words: Geofencing, ultra-wideband technology, one-class classification algorithm, 

fingerprinting, trilateration. 
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1. INTRODUCTION 

Ultra-wideband (UWB) is a wireless communication technology that utilizes a wide 

spectrum of frequencies to facilitate high-precision distance measurement and data 

transmission [1]. In recent years, UWB has gained significant attention due to its unique 

attributes, which make it particularly effective for radio-frequency-based indoor localization 

[2]. This technology offers both fine-range resolution for accurate distance measurements 

and high penetration capabilities, enabling signals to pass through various materials. 

Furthermore, UWB demonstrates adaptability to diverse environments while maintaining 

low power consumption, ensuring efficiency and sustainability. Importantly, its low-power 

emissions present minimal risks to human health and privacy, positioning UWB as a safe and 

versatile solution for a wide range of applications. 

UWB technology excels in 2D and 3D positioning and tracking, particularly in 

environments where GPS signals are unreliable, such as indoor or underground settings. In 

industrial contexts, UWB enables precise tracking of equipment and materials, optimizing 

workflow and inventory management. In healthcare, it facilitates real-time monitoring of 

patients and medical assets, enhancing operational efficiency and safety. Furthermore, UWB 

supports advanced home automation systems by enabling accurate localization of individuals 

and objects, thus improving the responsiveness of smart devices. One of the key applications of 

UWB is geofencing, which establishes virtual boundaries within a physical space [3, 4]. The 

geofencing is critical for scenarios such as ensuring equipment remains within designated 

factory zones, alerting healthcare staff to patient movements beyond safe areas, or triggering 

automated actions in smart homes based on occupants’ locations. 

Geofencing, when treated as an indoor localization problem, can be effectively addressed 

using one-class classification (OCC), a machine learning technique designed for scenarios 

where only data from a single class is available [5, 6]. The OCC model is trained using offline 

UWB measurements collected within the designated area, capturing signal characteristics such 

as time-of-flight and received signal strength. These measurements define the reference class, 

enabling the model to recognize authorized locations and detect anomalies in real time. Unlike 

traditional multi-class classification, which distinguishes between predefined categories, OCC 

learns the characteristics of the geofenced area without prior knowledge of outliers [7, 8]. 

Deviations, such as a target leaving (or entering) the area, are treated as anomalies. This 

approach ensures reliable monitoring, allowing geofencing systems to detect and respond to 

irregularities with high accuracy, enhancing security and spatial integrity. 

This paper proposes the k-Nearest Neighbours with Residual Norm Threshold (kNN-RNT) 

algorithm, a novel OCC method for UWB-based real-time tracking and geofencing. The kNN-

RNT integrates fingerprinting and trilateration techniques to estimate the position of a mobile 

tag relative to a predefined geofencing area, using a system of three fixed anchors. The method 

operates in two phases: an offline phase, where a fingerprint database is constructed by scanning 

a 2D zone to train a single-class model, and an online phase, where the model evaluates new 

measurements to determine the tag’s location. A filtering mechanism further refines the 

classification, enhancing detection reliability. Experimental results demonstrate the algorithm’s 

effectiveness, achieving over 99% accuracy within the geofenced area and significantly 

reducing error rates in surrounding zones, from 34% at 5 cm to less than 1% at 20 cm. 

The remainder of this paper is organized as follows. Section 2 reviews related studies on 

UWB-based indoor localization, focusing on geofencing and real-time tracking. Section 3 
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introduces the system model, followed by the proposed method in Section 4. Experimental 

results are discussed in Section 5, followed by conclusions in Section 6. 

2. RELATED WORKS 

Ultra-Wideband radio technology is widely recognized for its high temporal resolution and 

ability to resolve individual multipath components. These characteristics make UWB highly 

suitable for precise indoor distance measurements, making it a preferred choice for indoor 

localization research [9-11]. One of the most comprehensive survey papers on UWB indoor 

positioning is by Mazhar et al. [10], which provides an in-depth review of methods, algorithms, 

and implementations used in UWB-based positioning systems. The paper also presents a 

comparative analysis of UWB versus narrowband signals, demonstrating UWB’s superior 

performance in complex indoor environments. Similarly, Campaña-Bastidas et al. [11] focus 

on the application of UWB for indoor positioning, particularly for elderly monitoring. Their 

study highlights the benefits of UWB’s high precision and reliability in ensuring safety within 

indoor spaces. 

Geofencing, which defines virtual boundaries within a physical space, depends on accurate 

localization techniques to determine whether an entity is inside or outside a designated area. 

Several recent studies have explored geofencing in indoor localization, as referenced in [12-17]. 

SIABR [16] takes a fingerprinting-based approach, constructing a location-specific fingerprint 

database and using bi-directional models to infer user positions with high precision. Fidora [17] 

investigates the use of channel state information (CSI) to create location-specific datasets for 

training machine learning classifiers, enabling accurate geofencing predictions. Additionally, 

[18] examines the integration of fingerprinting with UWB technology, leveraging UWB’s fine-

grained distance measurements to improve localization accuracy and reliability. Ardoin [19] 

explores the feasibility of applying Radio Frequency Fingerprinting (RFF) to UWB devices and 

assesses its generalizability across different environments. Furthermore, Malik et al. [20] 

investigate UWB-based positioning and ranging techniques, utilizing the channel impulse 

response (CIR) fingerprinting to enhance the localization accuracy. 

One-Class Classification (OCC) has the potential to enhance geofencing applications by 

distinguishing between normal and anomalous location data. By training OCC models on data 

collected within the geofenced area, the system can effectively detect deviations, which may 

indicate unauthorized access or unusual activity, thereby improving the geofencing security and 

reliability. A comprehensive overview of OCC techniques is presented in [21], covering 

methods such as One-Class Support Vector Machine (OCSVM), Support Vector Data 

Descriptor (SVDD), One-Class Mini-Max Probability Machine, and Dual-Slope Mini-Max 

Probability Machine. Additionally, [22] investigates the use of OCC, particularly SVDD, for 

land cover classification from remotely sensed data. This study demonstrates how focusing on 

a single target class allows for efficient classification even with limited training data, 

highlighting the OCC’s potential for geofencing applications. 
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3. SYSTEM MODEL 

We consider a geofencing system deployed in a typical indoor environment with a complex 

layout, such as an office, classroom, or residential space, featuring multiple obstacles of varying 

sizes and shapes. Within this setting, the geofenced area is defined as a specific region, which 

can take a rectangular or any other shape depending on the application requirements. The 

localization infrastructure includes three anchor nodes situated at fixed and known positions, 

strategically placed to maximize coverage and accuracy within the geofenced area. These 

anchor nodes serve as reference points for the system. Additionally, there is a single mobile 

target node that is to be tracked as it moves within the indoor space. The target node periodically 

measures its distance to each anchor, and this data is used to determine whether it is inside or 

outside the predefined geofenced area. To ensure high accuracy and reliability of the distance 

measurements, it is required that a clear line-of-sight (LOS) condition is maintained 

between the target node and all three anchor nodes while the target is located within or near 

of the geofenced area. This assumption minimizes multipath effects and signal attenuation 

caused by obstructions, which are common in indoor environments, and is essential for 

achieving consistent geofencing performance using the UWB-based ranging. 

The target and anchor nodes are implemented as UWB-enabled devices, which are 

capable of performing the Two-Way Ranging (TWR) procedure. The term "ranging" refers 

to the process of estimating the distance between two wireless devices measuring the signal 

time-of-flight (ToF) between two UWB-enabled devices and then multiplying this time 

measurement by the speed of light to obtain the distance. To facilitate accurate ToF 

measurements, commercial UWB transceivers are equipped with specialized circuitry that 

precisely timestamps the send and receive events at the physical level. Each UWB device 

uses its own local clock to create these timestamps. Consequently, the ranging process 

typically involves the exchange of three messages between the two UWB nodes, a method 

known as the TWR procedure. 

 

Fig. 1 Two-Way Ranging procedure 

 

The TWR procedure is presented in Fig. 1 and it works as follows: 

1.  UWB device 1 sends a message to the UWB device 2 (signal 1). 

2.  Upon receiving the message, UWB device 2 records the timestamp and immediately 

sends a response back to UWB device 1 (signal 2). 

UWB Device 1 UWB Device 2

t1 

t2

t3

t4 

t5 

t6
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3.  After receiving the response, UWB Device 1 sends another message to UWB Device 2 

(Signal 3). This message contains all recorded timestamps from the previous signal 

exchanges. 

4.  By analysing the timestamps from these message exchanges, the system can accurately 

calculate the ToF according to Eq.1. 

 
   4 1 3 2 6 3 5 4( ) ( ) ( ) ( )
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t t t t t t t t
T

− − − + − − −
=  (1) 

The distance obtained through the TWR procedure represents the length of the shortest 

signal path between the two devices, ideally corresponding to their true physical separation. 

However, the accuracy of this measurement can be influenced by several factors, including 

multipath propagation, signal interference, clock synchronization errors, and hardware 

imperfections. In non-line-of-sight (NLOS) conditions, obstacles may cause signal reflections, 

leading to overestimated distances due to elongated signal paths. Despite these challenges, 

commercial UWB transceivers, such as those based on the IEEE 802.15.4a/z standard, typically 

achieve distance measurement accuracy of ±10 𝑐𝑚 under favourable conditions, with some 

high-precision implementations reducing errors to as low as a few centimetres in optimal line-

of-sight scenarios, [23]. 

4. PROPOSED ZONE DETECTION METHOD 

The proposed zone detection method is implemented using a two-phase approach, 

consisting of an offline phase and an online phase. 

4.1. Offline phase 

The offline phase involves conducting a detailed site survey to build two distinct 

fingerprint databases. The first dataset, referred to as the Interior Fingerprint Database 

(IFD), is created by systematically moving the tag across the entire geofenced area, 

ensuring a full coverage without any gaps. This database is later used during the online 

phase to detect whether the tag is inside the designated area. IFD and BFD are illustrated 

in Fig. 2. The second dataset, called the Boundary Fingerprint Database (BFD), is collected 

by moving the tag precisely along the perimeter of the geofenced area. This database plays 

a crucial role in training the system, as will be explained in a later section. 

 

Fig. 2 Interior (IFD) and Boundary (BFD) Fingerprint Database 

IFD BFD
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We assume that the target node autonomously captures fingerprints through periodic 

ranging rounds. The frequency of these ranging rounds is a configurable system parameter, 

typically ranging from 10 to 50 rounds per second. In each ranging round, the target node 

executes the TWR procedure with each anchor node individually, recording the resulting 

range estimates as a raw fingerprint. Each raw fingerprint is represented as a vector, 

𝒇 = (𝑑1, 𝑑2, 𝑑3), where 𝑑𝑖 denotes the TWR-measured distance between the target node 

and the 𝑖-th anchor. Since each point within the geofenced area corresponds to a unique 

combination of three distances to the anchor nodes, raw fingerprints inherently encode the 

tag’s location. 

The collected raw fingerprints are used to construct two types of fingerprint databases: 

plane and 2D. In the plane databases (IFD_P and BFD_P), fingerprints are stored in their 

original form, preserving the raw distance measurements to three anchor nodes. In contrast, 

the 2D databases (IFD_2D and BFD_2D) are created by mapping these distance 

measurements to 2D spatial coordinates, 𝑓 = (𝑥, 𝑦), using a trilateration procedure based 

on the known positions of the anchors. The trilateration is implemented via the least squares 

method to minimize positional estimation errors. Both database types are supported by the 

online detection method, allowing flexibility in geofencing scenarios. The method operates 

independently of the chosen representation, utilizing the appropriate fingerprint format for 

an accurate classification. 

4.2. Online phase 

During the online phase, the system's primary task is to determine whether the tag is 

inside or outside the geofenced area based on real-time distance measurements and the IFD 

database. The overall procedure is as follows. In the online phase, the tag periodically 

generates distance vectors that represent its current position. If IFD_2D database is used, 

each generated distance vector is transformed into 2D representation using trilateration 

procedure. To assess the tag’s presence within the designated area, the system first employs 

an OCC algorithm. The output of this algorithm is a numerical value correlated with the 

tag’s distance from the geofenced area. By comparing this value against a predefined 

threshold, the system produces a binary indication, signalling whether the tag is inside or 

outside the area. To mitigate the effects of noise and anomalies, a sequence of binary 

indications is processed through a filtering mechanism. The output of this filter provides 

the final, reliable indication of the tag’s presence within the geofenced area. Next, we 

provide a more detailed description of the three key components of the zone detection 

method: the OCC algorithm, threshold determination, and the filtering mechanism. 

For the zone detection, we employ our custom OCC algorithm, k-Nearest Neighbours 

with Residual Norm Threshold, which evaluates the uniformity of fingerprint distribution 

in proximity of the tag’s current position. The algorithm is illustrated in Fig. 3, where cross 

marks represent three distinct tag positions: A (inside the geofenced area), B (on the 

perimeter), and C (outside the area). Given an online distance vector, the algorithm first 

identifies the k nearest fingerprints within the IFD database using Euclidean distance as the 

metric for similarity. Each fingerprint is represented as a vector originating from the tag’s 

position. These k vectors are then summed, forming a residual vector (red arrows in Fig. 

3). The magnitude of the residual vector is referred to as the residual norm. When the tag 

is inside the geofenced area, fingerprints from IFD are expected to be uniformly distributed 

around it, resulting in a small residual norm. When the tag is near the perimeter, most IFD 
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fingerprints will be concentrated on one side, leading to a moderate residual norm. If the 

tag is outside the geofenced area, all nearby fingerprints will be located in similar directions 

relative to the tag’s position, producing a large residual norm. The farther the tag moves 

away from the geofenced area, the higher the residual norm becomes. 

 

Fig. 3 Illustration of kNN-RNT algorithm for k=3 

 

Let formalize this procedure. The current tag position is represented by the distance 

vector 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛), while a fingerprint from IFD is denoted as 𝐟 = (𝑓1, 𝑓2, … , 𝑓𝑛). 

In the specific case of plane and 2D zone detection problems, where 𝑛 =  3 and 𝑛 =  2, 

respectively, but we maintain an arbitrary 𝑛 to highlight the generality of the method. Let, 

𝑁 = {𝐟𝒊|𝑖 = 1, … 𝑘} be the set of k fingerprints in IFD nearest to the distance vector x. The 

residual vector 𝐫 = (𝑟1, 𝑟2, … , 𝑟𝑛) is then computed as: 
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Once the residual norm 𝜌 is computed for a given distance vector, the tag's presence 

within the geofenced area is determined by comparing 𝜌 to a predefined threshold 𝜏. 

Specifically, if 𝜌 < 𝜏, the tag is considered to be inside the area; otherwise, it is classified 

as outside. 

The choice of the threshold value 𝜏 is critical for ensuring the reliability of the detection 

method. If 𝜏 is set too high, the system may generate frequent false positives, incorrectly 

classifying the tag as inside the zone when it is actually outside. Conversely, if 𝜏 is too low, 

false negatives will occur, failing to detect the tag’s presence within the geofenced area. The 

optimal 𝜏 value depends on the density and distribution of fingerprints in the IFD database 

and cannot be selected independently of it. To determine an appropriate threshold, we utilize 

the BFD database, which consists of fingerprints collected along the perimeter of the 

geofenced area. At the perimeter, the tag's "inside/outside" status is ambiguous, meaning the 

probability of obtaining a residual norm above or below the threshold should be equal. To 

find such a threshold, we apply the kNN-RNT algorithm to each fingerprint in the BFD 

database and record the resulting residual norm values. These values are then sorted in 

A

B

C
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ascending order, and the median value is chosen as 𝜏. This approach ensures that half of the 

BFD fingerprints are classified as "inside the zone" and the other half as "outside," balancing 

the classification at the boundary. 

To mitigate the impact of noisy distance measurements, the method incorporates a 

filtering mechanism based on a shift-register-like data structure. This structure maintains 

the 𝐿 most recent binary indications, where a value of 1 signifies that the tag is inside the 

zone, and 0 indicates that it is outside. The final decision regarding the tag’s presence is 

determined by a hysteresis-based approach: 

▪ The system declares the tag inside the zone once the number of 1s in the register 

exceeds a predefined threshold 𝑇₁. 

▪ Conversely, the system switches the tag’s status to outside the zone only when the 

count of 1s drops below a lower threshold 𝑇₂, where 𝑇₂ < 𝑇₁. 

This dual-threshold strategy prevents rapid fluctuations in the detection output due to 

the transient noise, ensuring a more stable and reliable classification. 

5. IMPLEMENTATION AND EVALUATION  

The experimental evaluation was conducted in a typical office environment using a 

geofencing system with Ultra-Wideband technology. The testbed consists of four UWB nodes: 

three fixed anchors and one target node. The anchor nodes were mounted 1.50 m above the floor 

and strategically arranged in an equilateral triangle with side lengths of 4.10 m to ensure optimal 

signal coverage within the geofenced area. The target node was attached to a movable tripod, 

also positioned 1.50 m above the floor, allowing controlled movement across various positions 

during the experiments. The system operates with a ranging interval of 20 measurements per 

second, configured via onboard firmware settings. The ranging measurements were 

wirelessly transmitted in real time to a laptop running a location server, where the zone detection 

algorithm was implemented. The laptop was equipped with custom software, written in Python, 

to process distance measurements, classify geofencing events, and log detection results for 

further analysis. 

We use the Murata Type 2AB UWB Evaluation Kits for our nodes [24]. This kit integrates 

a Qorvo QM33120W UWB transceiver, a fully integrated impulse radio UWB wireless 

transceiver built for precise distance measurement [23], along with a Nordic nRF52840 

Bluetooth Low Energy SoC and UWB patch antennas, all on a single PCB. The power source 

for all nodes consists of rechargeable lithium-ion batteries, ensuring stable voltage supply 

throughout the experiments.  

The fingerprint databases for the zone detection method are constructed by systematically 

scanning the interior and perimeter of the geofencing area using the tag. The IFD databases 

(IFD_P and IFD_2D) contain a total of 4200 fingerprints, while the BFD databases (BFD_P 

and BFD_2D) comprise 1200 fingerprints. The kNN-RNT OCC algorithm is configured with  

𝑘 = 9, while the threshold parameter 𝜏 is experimentally determined using the BFD databases, 

as outlined in the previous section. Since the threshold value depends on the type of fingerprint 

database, it is 𝜏 = 0.48 for the IFD_P database and 𝜏 = 0.66 for the IFD_2D database. The 

filtering mechanism utilizes a shift register of length 𝐿 = 12, with upper and lower 

thresholds set to 𝑇1 = 12, and 𝑇2 = 4,  respectively. 
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Fig. 4 Experimental setup for zone detection method 

 

The operation of our evaluation testbed is characterized by two timing parameters: latency 

and response time. Latency is defined as the time elapsed from the start of a ranging round at 

the target node to the completion of the classification task by the location server for the 

corresponding online fingerprint. The testbed provides a latency of 24𝑚𝑠 or 26𝑚𝑠, depending 

on whether a plane or 2D fingerprint database is used, respectively. This latency comprises: 

a) the duration of the ranging round (20ms), b) the time required to transmit distance 

measurements to the location server (2ms), and c) the classification time, which is 2ms for plane 

fingerprints and  4ms for 2D fingerprints. The increased classification time for the 2D 

fingerprint database is due to an additional trilateration step, which maps the three measured 

distances to 2D spatial coordinates. The system response time is defined as the interval between 

the occurrence of an event, such as the target node crossing a geofencing boundary, and the 

moment the location server signals the event. This time is influenced by the duration of the 

ranging interval and the parameters of a shift-register-based filtering mechanism. In the 

adopted system configuration, the response time ranges from 50ms to 400ms, depending on 

the current state of the shift-register data structure. This delay is acceptable for most 

monitoring applications. 

We conducted two sets of experiments to evaluate the accuracy and effectiveness of the 

proposed zone detection method. First, we assessed the method's ability to accurately determine 

whether the tag is inside or outside the geofencing area. Next, we examined its effectiveness in 

detecting tag entry and exit events. 

5.1. Zone detection accuracy 

In this set of experiments, the tag was moved along predefined paths. The system’s “In/Out” 

responses were recorded and subsequently processed to evaluate the accuracy of zone detection. 

Anchor 1

Anchor 2

Anchor 3

GA

BZ20

BZ15

BZ10

BZ5

Mobile

tag
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Two metrics were utilized to assess the zone detection accuracy: In-Zone detection rate and 

Out-Zone detection rate represent the percentage of instances where the target node is identified 

as being within and outside the geofencing area, respectively. In the first experiment (denoted 

as GA), the tag followed a random path within the geofencing area. Since the tag never left the 

area, the expected In-Zone detection rate is 100%. In the second experiment (denoted as EZ), 

the tag moved along the perimeter of the geofenced area, where the expected In-Zone and Out-

Zone detection rates are both 50%. For the next four experiments, the tag moved along 

surrounding belts of the geofencing area at a fixed distance from the perimeter. These 

experiments are labelled as BZx, where 𝑥 ∈ {5,10,15,20} denotes the distance in 𝑐𝑚 of the 

tag from the perimeter. Ideally, the Out-Zone detection rate for these experiments should be 

100%. 

The Fig. 5 illustrates the fingerprints collected during these experiments. Each point 

represents a 2D location derived by applying the trilateration procedure to a raw distance 

fingerprint vector captured by the tag. Green points correspond to the IFD database, created 

during the offline scanning of the geofencing area. The remaining points, distributed around the 

area, were recorded during online testing as the tag was moved along predefined paths 

surrounding the area. The clear separation between differently coloured points suggests the 

potential for precise In-Zone/Out-Zone classification. 

 

Fig. 5 Collected fingerprints in GA and at a fixed distance from the perimeter 

The zone detection rate results, for both plane and 2D databases, are summarised in Table 

1. For the case when the tag moves within the geofencing area (GA) the method shows almost 

perfect zone detection accuracy of more than 99%. The very low Out-Zone rate of less than 1% 

indicates that there are minimal false negatives, where the tag presence inside the geofencing 

area are incorrectly identified as being outside. This high level of accuracy is crucial for 

applications that rely on precise geofencing, ensuring that the target node's location is accurately 

tracked and monitored within the designated area. The near-perfect 50/50% split between In- 
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and Out-Zone rates in the EZ experiment is expected, as the threshold 𝜏 is determined using tag 

movements along the same path (i.e., the perimeter of the area) during the offline phase. 

Table 1 Zone detection rate results for plane and 2D fingerprint databases 

 Plane fingerprint database 2D fingerprint database 

GA 
In [%] 99.92 99.83 

Out [%] 0.08 0.17 

EZ 
In [%] 50.12 50.02 

Out [%] 49.88 49.98 

BZ5 
In [%] 34.93 33.65 

Out [%] 65.07 66.35 

BZ10 
In [%] 19.89 12.38 

Out [%] 80.11 87.62 

BZ15 
In [%] 7.82 2.41 

Out [%] 92.18 97.59 

BZ20 
In [%] 5.31 0.66 

Out [%] 94.69 99.34 

The zone detection rates for the BZx experiments indicate that the method is less confident 

when the tag is outside the geofencing area. This is an expected result, as the kNN-RNT 

algorithm is trained exclusively on fingerprints collected within the geofencing area, making it 

more sensitive and accurate when detecting the tag inside the area than when it is outside. As 

can be observed, the Out-Zone detection rate rises while the In-Zone detection rate falls as the 

tag moves farther from the boundary, reflecting its proximity to the geofencing area. With the 

plane fingerprint database, the Out-Zone detection rate rises from 65% at 5 cm from the 

boundary to 95% at 20 cm. The accuracy is higher with the 2D fingerprint database, providing 

an improvement of approximately 5% over the plane database. However, it is important to note 

that the use of the 2D database is computationally more demanding, as it requires performing 

the trilateration procedure for each sample. 

In order to further validate the effectiveness of our kNN-RNT algorithm, we conducted a 

comparative analysis with three widely used OCC algorithms: One-Class Support Vector 

Machine (One-Class SVM), Mahalanobis Distances, and Isolation Forest, presented in Table 2. 

These algorithms are commonly employed for anomaly detection and spatial boundary tracking 

in geofencing applications. For all algorithms, we used the same dataset to ensure consistency 

in evaluation. Furthermore, to provide a fair comparison, we fine-tuned the parameters for each 

method, optimizing them to achieve their best possible performance. This ensures that our 

evaluation highlights the true capabilities of each approach under identical conditions. 
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Table 2 Accuracy comparison of the kNN-RNT algorithm with three standard one-class 

classification methods 

 
 

Algorithm 

2D fingerprint database 

Hits [%] 

GA 

kNN-RNT 99.83 

One-Class SVM 99.64 

Mahalanobis Distances 99.64 

Isolation Forest 99.40 

BZ5 

kNN-RNT 66.35 

One-Class SVM 66.06 

Mahalanobis Distances 58.77 

Isolation Forest 58.03 

BZ15 

kNN-RNT 97.59 

One-Class SVM 91.30 

Mahalanobis Distances 95.01 

Isolation Forest 91.21 

The results presented in Table 2 demonstrate that kNN-RNT consistently outperforms all 

baseline methods, achieving the highest hit rate across all test cases. As can be observed in the 

BZ5 scenario, both Mahalanobis Distance and Isolation Forest exhibit a significantly lower 

detection accuracy compared to One-Class SVM and kNN-RNT. However, while One-Class 

SVM performs competitively when the target node is located just outside the geofencing area, 

it consistently underperforms relative to kNN-RNT in other scenarios, further highlighting the 

robustness and superiority of our proposed method. 

5.2. Real-time tracking results 

In the second experiment, we aimed to emulate an application scenario for the proposed 

zone detection method, where the system identifies and signals a tag’s entry into and exit from 

the geofencing area. Signalling is facilitated by a speaker that emits a brief tone whenever the 

tag enters or exits the area, with distinct frequencies assigned to the “enter” and “exit” tones. 

For this experiment, the tag is moved along paths perpendicular to the geofencing area, 

beginning approximately 30 cm outside its boundary. When the system emits the “entry” tone, 

the tag’s current position is recorded as the entry point, and it continues moving toward a stop 

point located about 30 cm within the geofencing area. The tag is then returned along the same 

path to the starting point, and its position at the time of the “exit” tone is marked as the exit 

point. This procedure is repeated multiple times across different paths around the geofencing 

area. 

The results of this experiment are illustrated in Fig. 6, showing recorded entry points 

(red dots) and exit points (blue dots) for 42 entry-exit paths. The accuracy of entry-exit 

detection varies along the area boundary due to multipath effects and interference, which 

impact UWB distance measurements. These effects are particularly pronounced in complex 

indoor environments, such as the space where the experiment was conducted. However, 

the observed variations remain within the expected UWB ranging accuracy of ±10 𝑐𝑚. 

Note that all recorded entry and exit points are located outside the geofencing area. This is 

because, in this experiment, we used the same threshold parameter 𝜏 as in the previous 

experiment, where it was optimized to minimize the Out-Zone detection rate for a tag 

moving within the geofencing area. As a result, the system prioritizes reliable detection of 
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the tag entering the area over detecting its exit. Practically, this means that the "entry" tone 

is always triggered just before the tag enters the geofencing area but never when it is 

already inside. Furthermore, the entry points remain relatively close to the area’s boundary, 

with an average distance of 4.4 cm and a maximum of 8.5 cm. Exit points are consistently 

farther from the boundary than entry points, averaging 7.8 cm with a maximum distance of 

11.5 cm.  

 

Fig. 6 Entry (red dots) and exit points (blue dots) obtained in real-time tracking experiment 

 

The results of the tracking experiment suggest that reducing the threshold parameter 𝜏 

could balance entry-exit detection accuracies. The expected effect would be shifting both 

entry and exit points closer to the geofencing boundary. Another source of entry-exit 

detection inaccuracy is the delay introduced by the filtering mechanism, which adds a 

latency of up to 8 samples when transitioning between in-zone and out-zone states, and 

vice versa. This delay, when multiplied by the tag’s speed, translates into the spatial 

separation between entry and exit points along the same path. Reducing the length of the 

shift register could minimize this entry-exit discrepancy, but it may also increase variations 

in the detected distances from the area’s boundary. However, in this paper, we do not 

further explore potential tracking optimizations related to the threshold parameter 𝜏 or 

shift-register length. 

6. CONCLUSIONS 

This paper introduces the kNN-RNT algorithm, a novel OCC-based approach for real-

time UWB geofencing. By utilizing fingerprinting and trilateration, the method effectively 

distinguishes between authorized and unauthorized locations using a residual norm 

thresholding mechanism. The two-phase operation ensures a robust geofence enforcement, 

with an offline phase constructing a reference fingerprint database and an online phase 

performing the real-time classification. Experimental results validate the high accuracy and 

reliability of the proposed approach, achieving over 99% detection accuracy within the 

geofenced zone. Furthermore, the method significantly reduces misclassification rates in 

transition areas by employing an adaptive thresholding strategy and a filtering mechanism. 



60 S. ĐOŠIĆ, M. JOVANOVIĆ, M. VELJKOVIĆ, G. LJ. ĐORĐEVIĆ 

The results showed a significant decrease in accuracy error, from 34% for the belt zone at 

5 𝑐𝑚 to less than 1% for the belt zone at 20 𝑐𝑚. The findings demonstrate the potential of 

kNN-RNT for applications in security, industrial automation, healthcare, and smart 

environments, offering a scalable and efficient geofencing solution for indoor localization 

systems.  

Building on these promising results, future work will address practical deployment 

challenges. Although the proposed kNN-RNT algorithm demonstrates high accuracy in 

geofenced zone detection, its performance may be impacted by environmental factors such 

as multipath propagation, signal interference, and non-line-of-sight conditions, which can 

introduce variations in ranging precision. To enhance robustness under such conditions, 

we plan to explore dynamic geofencing techniques, in which adaptive models update 

fingerprints in response to environmental changes. 
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