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Abstract. Finite-time stability for the linear discrete-time system with state delay was 

investigated in this article. Stability of the system was analyzed using both the 

Lyapunov-like approach and the discrete Jensen’s inequality. A novel Lyapunov-like 

functional with a discrete convolution of delayed states was proposed and used for the 

derivation of the sufficient stability conditions of the investigated system. As a result, 

the novel stability conditions guarantee that the states of the systems do not exceed the 

predefined boundaries on a finite time interval. The proposed methodology was 

illustrated with a numerical example. A computer simulation was performed for the 

analysis of the dynamical behavior of this system. 

Key words: discrete systems, finite-time stability, Jensen’s discrete inequality, time 
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1. INTRODUCTION 

To investigate the stability of the control system, the Lyapunov method was widely 

used in the control system community. In some cases, the Lyapunov stability is 

insufficient to describe the dynamical behavior of some special classes of the system or to 

give satisfactory conclusions about the different types of stability. This is the case for the 

practical stability, where the requirements are set on the states of the system. In these 

situations, there are constraints on the system states trajectories, i.e. they have to stay 
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within the predefined values and should not exceed them. Consequently, it is of particular 

interest to investigate the trajectories of the system only over a finite time interval. The 

described stability concept, based on the stability investigation in a limited time frame, is 

named as finite-time stability (FTS). In that sense, the system is stable if the states of the 

system do not exceed the predefined boundaries on some fixed time interval. This 

stability concept was introduced in the era of modern control systems [1-3], and it is still 

widely used nowadays as well. Initially, the concept had an academic value, and its 

practical applications were applied later on. With the development of the linear 

inequalities, the stability conditions that could be used for practical purposes were 

developed for both the continuous [4-8] and discrete-time systems [9-16].    

Time delay is often present in electrical, mechanical, chemical, and other systems. The 

described latency in such systems can potentially bring the systems into instability, or its 

appearance can result in low performances during the transient process. A significant effort 

was made to investigate the dynamical behavior and stability of such systems [17-22]. 

The FTS concept was applicable to both the regular and time-delay systems. However, 

the number of the reported results of the FTS for time-delay systems is limited. Some FTS 

conditions of time-delay systems were reported in [23-25]. These results were obtained 

based on the estimation of state vectors. They were found to be either conservative or 

inconvenient for practical calculations. Using the linear matrix inequalities (LMI) and the 

Lyapunov-like functional, less restrictive FTS results for time-delay systems have been 

reported, [26-30].   

In this article, the finite-time stability of discrete time-delay systems was investigated. 

A discrete Lyapunov-like functional with a discrete convolution of delayed states [31] 

was used for the stability investigations. The methodology used throughout the article was 

to combine the Lyapunov-like approach and the Jensen‟s discrete inequality. The novel 

sufficient stability conditions were presented in a form of algebraic inequalities. 

Notations: The matrix transposition was denoted by a superscript „T‟. n  and n m  

are the n-dimensional Euclidean spaces and the set of all real matrices having dimension 

n  m, respectively. X > 0 denotes a real positive definite matrix, while X > Y implies that 

the matrix X  Y is a positive definite matrix. max(X) (min(X)) denotes the maximum 

(minimum) of eigenvalues of a real symmetric matrix X. 

2. PROBLEM FORMULATION   

A linear discrete system with state delay was analyzed. The system was described as: 

 
0 1( 1) ( ) ( )x k A x k A x k h      (1) 

with a known vector function of the initial conditions: 

 ( ) ( ), { , 1, ... , 0}x j ψ j j h h       (2) 

where ( ) nx k  is a state vector, 0

n nA   and 1

n nA   are known constant matrices, 

h is a constant time delay. The initial condition (k) is the a priori known vector function 

for each k  {h, h+1,...,0}  
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Definition 1 The linear discrete time-delay system (1), which satisfies the initial condition 

(2), is said to be finite-time stable with respect to ( , , )N  ,    if  

 
 , 1, ,0

sup ( ) ( ) ( ) ( ) , {1,2, , }T T

k h h

k k x k x k k N   
   

       (3) 

Lemma 1 (Jensen’s discrete inequality) For any positive symmetric constant matrix n nM  , 

scalar n  and a vector function ( ) :{ , 1, ,0} nf k h h     the following inequality is valid: 

 
1 1 1

( ) ( ) ( ) ( )

T
n n n

T

k j k

f k M f k n f k M f k
  

 
 

 
    (4) 

Lemma 2 For any symmetric positive definite matrix 0T    , the following expressions 

hold: 

 12 ( ) ( ) ( ) ( ) ( ) ( )T Tu k v k h u k u k v k h v k h         (5) 

    12 ( ) ( ) ( ) ( ) ( ) ( )T Tu k v k h u k u k v k h v k h          (6) 

3. MAIN RESULT 

In this section, a novel discrete Lyapunov-like functional with a discrete convolution 

of delayed states is defined. The functional was used to find a sufficient delay-dependent 

FTS condition. The definition for this class of the functional was initially introduced in 

[31]. The following lemma defines this functional and determines its characteristics. 

Lemma 3. Consider the time delay system (1). Let a scalar, aggregation function is 

defined as: 

 ( ) ( ) ( )T

k k kV x y x Py x  (7) 

where vector y(t) is defined by discrete convolution: 

 1

( ) ( ) ( ) ( ),

( ), { , 1, ... , 0}

h

k

j

k

y x x k Q j x k j

x x k h h 



  

     


  (8) 

and ( )Q j  is the n n
 
discrete matrix function: 

 0( 1) ( ), {0,1, , 1}jQ j A A A j h      , (9) 

where matrix A is a solution of the matrix equation (10): 

 
1

0 1 0h hA A A A      (10) 

The forward difference 1( ) ( ) ( )k k kV x V x V x   of expression (7) along the trajectory of 

system (1) is calculated as: 

 ( ) ( )( ) ( )T T

k k kV x y x A PA P y x     (11) 
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Proof. The forward difference of (7) along the solutions of system (1) is:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

k k k k k k kV x y x Py x y x P y x y x P y x         (12) 

Term ( )ky x was derived in the following manner: 

 

1

0

(1)

1

( 1) ( )

0

1

( ) ( ) ( ) ( )

[ (1) ] ( ) ( (2) (1)) ( 1)

( ( ) ( 1)) ( 1) ( ( )) ( )

[ (1) ] ( ) ( ) ( )

h

k

j

QA I

Q h Q h

h

j

y x x k Q j x k j

A Q I x k Q Q x k

Q h Q h x k h A Q h x k h

A Q I x k Q j x k j





  



     

      

       

     





  (13) 

The following matrices are defined as:  

 
0 (1)A A Q    (14) 

 ( ) ( 1) ( ), 1,2, , 1Q j Q j Q j j h        (15) 

 1( ) ( )Q h A Q h    (16) 

Using the expression: 

 ( ) ( ) ( ), 1,2, ... ,Q j A I Q j j h      (17) 

and calculating ( )ky x  and ( )kV x , it can be obtained:  

 ( ) ( ) ( )k ky x A I y x     (18) 

 

( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

T T T

k k k k k

T T

k k

T T

k k

V x y x A I Py x y x P A I y x

y x A I P A I y x

y x A PA P y x

    

  

 

  (19) 

This completes the proof.  

Matrix ( )Q j  can be determined in the following way: from (16) and (17), it can be 

calculated: 

 

2

0

( 1) ( ) ( ) ( ) ( ) ( 1) (1)

( ), {0,1, , 1}

j

j

Q j Q j A I Q j AQ j A Q j A Q

A A A j h

        

   
  (20) 

with the final condition 

 1 1( 1) ( ) ( )Q h Q h A Q h A       (21) 

From (20) and (21), it can be obtained: 

 0 1( 1) ( )hQ h A A A A      (22) 

i.e. 

 
1

0 1 0h hA A A A      (23) 

which had to be demonstrated.  
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Using the result obtained in Lemma 3, it is possible to present the main results of this 

study. The following theorem gives the sufficient condition of FTS of system (1).  

Theorem 1 Linear discrete time delay system (1) with  

 
( ) ( ) ( ) ( ), 0,

{ , 1, ... , 0}, {1,2, , }

T Tx k j x k j q x k x k q

j h h k N

   

     
  (24) 

is finite-time stable with respect to {, , T}, < , if there exist two positive scalars,  

and , such that: 

 
1

1

1

1

Nh h

h q





  


 

    


  
  (25) 

 1 2 1,2

1 1 4
(max{ , 0}, ), ,

2

q h

h


   

 
    (26) 

 1 4q h    (27) 

 0, 1,2, ,i i h    (28) 

where: 

 max ( ) 1TA A I    ,  (29) 

 1 1

max 0 0

1

{( ) ( ) ( )},
h

T j T j

i i

j

A A A A A A    



      (30) 

with matrix A as a solution of: 

 1

0 1 0h hA A A A      (31) 

Proof. For P I ,  using (11), it follows: 

 max

( ) ( ) ( ) ( )

( ) ( ) ( )

( 1) ( )

T T

k k k

T T

k k

k

V x y x A A I y x

A A I y x y x

V x





  

 

 

  (32) 

After the recalculations it can be obtained: 

 1( ) ( ) ( ) ( 1) ( )k k k kV x V x V x V x       (33) 

so that: 

 
1( ) ( )k kV x V x     (34) 

Applying iteratively condition (34), it follows: 

 2

1 2 0( ) ( ) ( ) ( )k

k k kV x V x V x V x         (35) 

In order to find the expression for 
0( )V x , equations (7), (8) and (9) were used: 

 

1

0

1

1 1

1 1

( ) (0) (0) 2 (0) (1) ( )

(1) ( ) (1) ( )

h
T T j

j

T
h h

j j

j j

V x x x x A Q x j

A Q x j A Q x j





 

 

  

   
     
   



 

 (36) 
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Based on inequality (5) (Lemma 2), for I   ,  0  it can be found that:  

 1 1

1 1 1

2 (0) (1) ( ) (0) (0) ( ) ( )
h h h

T j T T

j

j j j

x A Q x j x x x j x j   

  

         (37) 

Using Definition 1 and inequality (28), it follows: 

 1 1

1

2 (0) (1) ( )
h

T j

j

x A Q x j h 



        (38) 

Using a discrete version of  the Jensen‟s inequality (Lemma 1), the following inequality 

can be obtained: 

 

1 1

1 1

1 1

1

1

(1) ( ) (1) ( )

( ) (1)( ) (1) ( )

( ) ( )

T
h h

j j

j j

h
T T j T j

j

h
T

j

j

A Q x j A Q x j

h x j Q A A Q x j

h x j x j h  

 

 

 





   
    

   

  

   

 





  (39) 

In that case, (36) becomes: 

 

1

0

1

( )

(1 )

V x h h

h h

     

    





   

   
  (40) 

Combining (40) with (34), it can be calculated: 

 1( ) (1 )k

kV x h h           (41) 

and: 

 
1

1

( ) ( ) 2 ( ) (1) ( ) ( )
h

T T j

k

j

x k x k x k A Q x k j V x



     (42) 

or: 

 
1

1

( ) ( ) ( ) 2 ( ) (1) ( )
h

T T j

k

j

x k x k V x x k A Q x k j



     (43) 

The second term after the inequality symbol of expression (43) is to be found. Using 

inequality (6), for I   , 0  it can be derived: 

     

1 1

1 1

1

1

2 ( ) (1) ( ) ( ) ( ) ( ) ( )

( ) ( )

h h
T j T T

ј

j j

h
T

ј

j

x k A Q x k j hx k x k x k j x k j

x k x k h q

  

  

 

 





     

 
  

 

 



  (44) 

Combinig (41), (43) and (44), it can be calculated: 

 1 1( ) ( )[1 ] (1 ), 1,2, ,T kx k x k h q h h k N                  (45) 
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If expressions (46) and (47) hold 

 1 1(1 ) (1 ), 1,2, ,k h h h q k N                   (46) 

 11 0h q       (47) 

that implies 

 ( ) ( ) , 1,2, ,Tx k x k k N    (48) 

Inequality (47) is satisfied if conditions (26) and (27) are fulfilled. This completes the 

proof. 

The estimation of parameter q from (47) is complicated in some cases. The following 

theorem presents a sufficient FTS condition, excluding the necessity for the estimation 

of q. 

Theorem 2 Linear discrete time delay system (1) with a given initial condition (2) is 

finite-time stable with respect to {, , T}, <  if  two positive scalars,  and , exist, 

such that the following conditions are satisfied: 

 
1

1

(1 )

1

Nh h

h

     


  





  


 
 , (49) 

 1 2 1,2

1 1 4
(max{ , 0}, ),

2

h

h


   

 
  , (50) 

 1 4h  , (51) 

 0, 1,2, ,i i h  , (52) 

where scalars , i,  and matrix A are defined in (29)-(31). 

Proof. The proof of this theorem coincides with the proof of Theorem 1 up to 

expression (43). Expression (44) is reformulated as: 

 
1 1

1 1

2 ( ) (1) ( ) ( ) ( ) ( ) ( )
h h

T j T T

ј

j j

x k A Q x k j hx k x k x k j x k j   

 

         (53) 

Using (41), (43) and (53), it can be calculated 

1 1

1

( ) ( ) (1 ) ( ) ( ) ( ) ( ) ,

1,2, , , ( ) ( ) [0, ]

h
T k T T

ј

j

T

x k x k h h hx k x k x k j x k j

k N x k x k

        



 



       

  


  (54) 

i.e. 

 

1 1

1

( ) ( ) (1 ) ,

( ) ( ) [0, ]

h
T k

ј

j

T

x k x k h h h

x k x k

          



 



     

 


  (55) 
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If the following condition is satisfied 

 1 1(1 ) , 1,2, ,k h h h k N                    (56) 

then 

 ( ) ( ) , {1,2, , }Tx k x k k N     (57) 

From (56), it can be obtained: 

 1 10 (1 ) (1 )h h h                  (58) 

and 

 11 0h        (59) 

Inequality (59) is satisfied if conditions (50) and (51) are fulfilled. This completes the 

proof. 

Remark 1 Theorem 2 has a more pronounced practical importance since it does not 

require the calculations of parameter q. This parameter can be estimated from the 

simulation, as in Figure 2. Using the estimation of parameter q, the conditions from 

Theorem 1 give less conservative stability results.  

Remark 2 The smaller values of parameter q satisfying (24) significantly reduce the 

conservativeness of criterion (25)-(28). With the analysis of condition (24), it follows that 

the value of parameter q can be a function of integers with time index k. In this case, there 

exists a sequence q(k) for the different values of index k. Sequence q(k) cannot be 

determined analytically. 

Remark 3 Further improvement of the stability conditions proposed in Theorem 1 and 

Theorem 2 can be obtained by introducing a generalized matrix instead of the identity 

matrix in the Lyapunov-like function. 

4. NUMERICAL EXAMPLE 

Example 1 The following system was analyzed: 

 

0 1

0 1

0.6 0 0.1 0.2

0.4 0.9 0.

( 1) ( ) ( )

.
,

1 0
, 1

1

x k A x k A x k h

A A h

   

   
     
   

 (60) 

The dynamical behavior of the system is simulated using the conditions  (k) = [1 1]
T
, 

k =  {1,0}. In that case, the following can be calculated: 

( ) ( ) 2 , { 1,0}T t t k       

Figures 1 and Figure 2 show initial response x(k) and the norm of state vector x
T
(k)x(k) 

of system (60), respectively. It can be concluded that the system is not asymptotically 

stable. 
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Fig. 1 The state response, ( )x k , of the analyzed system 
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Fig. 2 The norm of the state vector, ( ) ( )Tx k x k  

Based on the initial response of system (60), for N = 10, it can be chosen  

 

( ) ( )
0.75 , { 1, 0}, {1,2, , }

( ) ( )

T

T

x k j x k j
q j k N

x k x k

 
       

so that expression (24) is valid.  

From (10) for 1h  , it can be found: 

 
0.7171 0.2953

0.4544 0.8603
A

 
  
 

, 

and: 

 1.3790,  0.1012   . 

Based on Theorem 1 for  = 2 and N = 10, one can find the minimal values of parameter 

, (m2 = 385)  such that system (60) is FTS. The values of other parameters are:  
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2

1

1

1

,   ,  ,

 0.333

 0.0827 0.9173  0.2777

1
119.6497

3,

1

Nh h

h q

 

   


  














 




 



 

 

2 192.5000m 



 

Similarly, using Theorem 2 for  = 2 and N = 10, the minimum value of parameter   is 

m3 = 476 and: 

 

1

3

1

1 20.1142,  0.8858,  0.329

1

2,  0.3333,

128.8368, 23 .0000
1

8N mh h

h q

 



 


 

 








  



  

 




 

It is observed that Theorem 1 gives a more favorable result than Theorems 2 does, as it 

uses additional information about parameter q. However, Theorem 2 is less complicated 

for the practical calculations since it does not require an estimation of parameter q. 

It can be noticed in Figure 2 that the actual value of parameter   is estimated to be 

a = 50.5. 

5. CONCLUSION 

This article investigated the sufficient conditions for the FTS of linear discrete time-

delay systems. Combining the Lyapunov-like functional, discrete convolution of delayed 

states and the discrete Jensen’s inequality, novel sufficient delay-dependent criteria have 

been derived. The stability conditions were expressed in the form of algebraic inequalities. 

Further improvements of the results presented in this study can be obtained by replacing 

the identity matrix with a generalized matrix in the Lyapunov-like function. 
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