
FACTA UNIVERSITATIS  

Series: Automatic Control and Robotics Vol. 15, No 2, 2016, pp. 85 - 94   

 

OPTIMAL COMPRESSOR FUNCTION APPROXIMATION 

UTILIZING Q-FUNCTION APPROXIMATIONS 

UDC 621.43.013.7:(621.391:519.226) 

Jelena Nikolić, Zoran Perić
 

University of Niš, Faculty of Electronic Engineering, Department of Telecommunications, 

Niš, Republic of Serbia 

Abstract. In this paper, we have proposed two solutions for approximating the optimal 

compressor function for the Gaussian source. Both solutions are based on approximating 

Q-function with exponential functions. These solutions differ in that the second one is 

given in parametric form and can be considered as a more general solution compared to 

the first one, which is a special case of the second solution for a specific value of the 

mentioned parameter. The approximated functions proposed in the paper facilitate designing 

scalar companding quantizers for the Gaussian source since with the application of these 

functions main difficulties occurred in designing the observed quantizers for the Gaussian 

source can be overcome. 
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1. INTRODUCTION 

It is well known that the software implementation of optimal companding quantizers 

encounters many difficulties when Gaussian source is assumed in designing [1]-[5]. This 

is a consequence of nonexistence of the closed-form formula for the optimal compressor 

function for the Gaussian source. Motivated with this drawback in designing optimal 

companding quantizers for the Gaussian source, we have focused our research toward 

solving the observed problem, i.e. toward determining some closed-form formula for the 

function which approximates the optimal compressor function the closest possible. What 

we propose is some helpful solutions for overcoming this problem. We study the 

Gaussian source because it arises in numerous applications. For instance, discrete Fourier 

transform coefficients are often considered to be the output of a Gaussian source [1]. 
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Moreover, the first approximation to the short-time-averaged probability density function 

(PDF) of speech amplitudes is provided by the Gaussian PDF. 

The need for simplifying the design procedure of scalar companding quantizers for the 

Gaussian source, where the goal is to preserve performance as much as possible, has been 

the driving force behind numerous papers (for instance [2]-[5]), including this one. In [3]-[5], it 

has been shown that one of the manners to achieve this goal is based on the linearization of the 

compressor function and the resulting quantizers are known as piecewise linear scalar 

companding quantizers. Unlike the previous papers addressing this problem, we have focused 

our research toward finding some nonlinear approximations of the optimal compressor function 

for the Gaussian source, where the goal is to provide closed-form formulas for designing 

quantizers having compressor function similar the optimal compressor function. In what 

follows we describe in detail two manners for achieving this goal. 

2. PROBLEM OBSERVATION 

In this section we recall in brief the theory of scalar companding quantization of the 

Gaussian source. In particular, we highlight the problem encountered in designing scalar 

companding quantizers for the Gaussian source. We assume, as in [2], that information 

source is the Gaussian source with memoryless property, zero mean value and variance σ
2
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and that compressor function is of the form [1], [6] 
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so that for the given support region threshold xmax [7] 
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and variance 2̂ , the MSE (mean squared error) distortion of the observed N-level 

companding quantizer is minimized. By substituting (1) in (2) one can easily determine the 

optimal compressor function of the companding qunatizer designed for the Gaussian source 

of variance 2̂  
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or equally 
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are well known erf and Q function [1]. So defined compressor function further determines 

the representation levels 
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and the decision thresholds of the observed quantizer 
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Since we have assumed symmetrical PDF (1), the symmetry in designing the observed 

quantizer follows, so that it holds yi = -y-i, i = 1, 2, …, N / 2, ti = -t-i, i = 1, 2, …, N / 2. 

From Eqs. (4)-(9) it follows 
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As highlighted in the papers [2]-[5], and, as one can see from Eqs. (4)-(7) and (10), (11), to 

preform companding quantization for a Gaussian source, the two basic blocks of companding 

quantizer, named compressor and expandor, should preform numerical integration (observe 

Eqs. (4)-(7)) and should solve integral equations (observe Eqs. (10), (11)), which is not that 

simple nor from the software nor from the hardware point of view. In what follows we 

propose two solutions for overcoming the observed problem. 

3. THE FIRST SOLUTION TO THE OBSERVED PROBLEM 

Let us define an approximation of the optimal compressor function as follows 
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One can easily notice that the last equation is derived from Eq.(5), where the Q-function, 

Q(·), is directly substituted with some approximation function F(·). Among the available 

Q-function approximations having relatively simple analytical form [8]-[14], let us chose 

the one from [14], which is of the simplest analytical form 

 
GU 21

( ) exp{ / 2}
2

F x x  . (13) 

Note that, the simplicity is here an evident need. The notation of the index GU follows from 

the abrivations of the authors surnames from [14] (Gasull and Utzet). Substituting Eq. (13) 

in Eq. (12) results in 
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For so obtained compressor function, similarly as in Eqs. (8) and (9), we further 

determine the representation levels and the decission thresholds from 
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so that we end up with 
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Here, one can observe that with the straightforward application of the approximation from 

[14], we have managed to derive the closed form formulas for determining the representation 

levels and the decission thresholds. In the numerical results section we will discuss about the 

usefulness of the observed solution. 
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4. THE SECOND SOLUTION TO THE OBSERVED PROBLEM 

Let us propose a novel function of the form 
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which can be considered as a class of very simple exponential parametric approximations 

of the Q-function having a special case for a = 0.5. In other words, for a = 0.5, it holds the 

equality of the proposed two solutions to the observed problem 
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Combining Eqs. (12) and (19) results in 
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For the given value of the parameter a = a
n
, the representation levels and the decision 

thresholds are determined from 
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so that we derive 
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In a number of papers considering the observed problem, the design of the quantizer has 

been performed for 1ˆ 2   [2]-[7]. As already indicated and shown, this assumption do 

not diminish the significance of the observed analysis because of the fact that it can be 

simply extended to the case where 1ˆ 2  . For that reason, in this paper we assume that 

1ˆ 2  . In what follows, due to simplicity reasons, we actually omitt the notation of 2̂ . 

It is now questionable how to determine the value of the parameter a. What we propose 

is to determine the value of the parameter a so that the absolute error in approximating 

compressor function is minimal one. Formally, we set the following mathematical problem 
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By intorducing the approximation 
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whose validity we will demonstrate in the numerical results section, we simplify the 

problem to be solved, so that we face with the following optimization problem 
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The solution to the above mentioned optimization problem can not be obtained as closed-

form solution. However, we can solve this iteratively 
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and Γ(·) denotes Gamma function. 

5. NUMERICAL RESULTS 

This section discusses the results obtained by applying the two observed approximations 

of the Q-function. Let us first consider Fig. 1, where 3/maxx  dependence on bit rate 

R = log2 N is presented, where xmax is calculated from Eq. (3). As we have expected and it is 
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already known, the value of the support region threshold increases with the bit rate. Fig. 1 

has infact the purpose of illustrarting the range of arguments of the     Q-function that is of 

interest for our analysis. Note that we have assumed bit rates R ≥ 5 bit/sample, commonly 

observed in the asymptotic analysis of scalar companding quantizers. One can observe that 

for the considered bit rates, and, accordingly, for the considered arguments of the Q-function, 

the function takes very small values (see Fig. 2). Moreover, one can easily calculate that when a 

takes values near 0.5 and xmax is given by Eq. (3), the right hand side of Eq. (28) rapidly 

approaches to zero. Accordingly, our assumption given by Eq. (28) is here justified. 
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3
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Fig. 1 3/maxx  dependence on bit rate R 

For the second solution, by examining different initial solutions a
(0)

 for the iterative 

process given by Eq. (30) we have obtained the results approaching the ones achieved with the 

first solution, also described in the paper. This can be seen in Fig. 3, where the optimal 

compressor function and the obtained approximations are shown for the case where N = 128, 

xmax = 4.0274. Interestingly, by examining different initial values of the iterative process we 

have determined that after only one iteration the approximated compressor functions 
GU

app ( )c x and 
n

app ( )c x  are similar ones. For instance, one can see 
GU

app ( )c x
 
and  

n

app ( )c x   obtained  

for  a
(1)

 = 0.4332, where a
(0)

 = 1. It possibly indicates the manner of obtaining the 

approximation from [14], since this manner has not been explained in [14]. In fact, the 

approximation from [14] has been obtained heuristically. This solution can be further 

improved by examining two or more regions of the input signal values and by proposing 

more suitable approximations, which, for the above mentioned regions, are lower bound 

approximations as two considered solutions. This analysis we left for the future research. 
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Fig. 3 Optimal compressor function c(x), the novel approximated compressor function 
n

app ( )c x , the approximated compressor function with GU approximation 
GU

app ( )c x , 

for Gaussian PDF of unit variance, N = 128, xmax = 4.0274 
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4. CONCLUSION 

In this paper, we have proposed two solutions for approximating the optimal compressor 

function for the Gaussian source. We have shown that both solutions, based on exponential 

approximations of the Q-function, provide the derivation of the closed-form formulas that 

specify relatively simple design of the observed quantizer. We have anticipated that the 

proposed solutions can be further improved by examining two or more regions of the input 

signal values and by proposing more suitable approximation for the above mentioned 

regions, which we have left for the future research. Eventually, by taking into account that 

with an application of a properly chosen filtering technique to non-Gaussian source the 

sequences, which are approximately independent and Gaussian are produced, one can 

conclude that our proposal can be widely applicable. 
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