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Abstract. In this paper, two scalar quantizers for the memoryless Laplacian source with 

low number of levels are designed and discussed. The nonuniform quantizer is designed 

according to the Lloyd-Max’s algorithm since it can provide an optimal performance in 

the minimum distortion sense. Two variants of the uniform dead-zone quantizer are 

designed according to the criterion of minimal distortion and the simultaneous criterion 

of minimal distortion and minimal bit rate. Joint design of quantizer and Huffman 

encoder is considered in all proposed solutions. In addition, forward adaptation of the 

observed quantizers is performed on frame-by-frame basis. The best performance from the 

point of practical implementation is obtained using a uniform dead-zone quantizer that 

satisfies the criterion of minimal distortion and minimal bit rate at the same time. 

Moreover, the theoretical results are verified via the experimental results obtained on a 

real speech signal. 

Key words: Lloyd-Max’s quantizer, uniform dead-zone quantizer, forward adaptation 
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1. INTRODUCTION 

Quantization is the process of approximating a continuous range of values with a finite 

(preferably small) range of discreet values known as codewords. It is realized in two 

phases. In the first phase, quantization is employed for the purpose of analog to digital 

signal conversion, whereas in the second phase, it is used to achieve signal compression. 

In this paper we elaborate on the latter phase. From the point of compression, the most 

suitable are scalar quantizers with a low number of quantization levels N.  
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The quantities that are usually used to evaluate the quantizer performance are SQNR 

(signal to quantization noise ratio) and bit rate R. One of the most important methods of 

scalar quantization is the Lloyd-Max's algorithm that maximizes SQNR for the referent 

probability density function [1, 9]. In particular, the Lloyd-Max algorithm iteratively 

computes the optimized quantization parameters (representative levels and decision 

boundaries) by minimizing the mean square distortion. The optimality holds for the fixed 

rate quantizers, where each quantization level is represented by the same amount of bits, 

leading to a bit rate determined as R=log2 N. However, iterative Lloyd-Max’s algorithm is 

convenient for utilization when small N (low bit rate quantizers) is at disposal, due to the 

increased design complexity when dealing with large N [1]. 

Regarding the low-rate quantizer, performance improvement in bit rate can be 

achieved when we take into account variable-length coding (VLC) of its outputs rather 

than fixed-length coding. Lossless compression can be realized by employing entropy 

codes that involve variable-length code words. Some of the most popular entropy coding 

techniques include Lempel-Ziv, arithmetic and Huffman coding [2]. In this paper, we 

have decided to incorporate Huffman code on the quantizer output, due to its high 

efficiency when working with low number of quantization levels [2]. In contrast to the 

design of Lloyd-Max quantizer, the problem of quantizer design when VLC is used 

requires a different approach. In this scenario, the design implies determining the 

quantizer parameters that minimize the mean squared distortion for a given rate R. The 

authors in [10] present the performance analysis of several types of quantizers for low and 

moderate bit rate, when Huffman code is applied. It was shown that the best performance 

offers the hybrid quantizer combined with the uniform and Lloyd-Max quantizer. In 

addition, the low bit rate or low resolution scalar quantizers are considered in [5]. The 

focus of this paper is on design of the asymmetrical scalar quantizers for Laplacian and 

Gaussian source including the analysis of entropy when distortion approaches one. 

In this paper, we present two scalar quantizers with N=5 levels designed for unit 

variance of the input signal. The distribution of the input speech signal is assumed to be 

Laplacian. Joint design of the quantizer and lossless encoder is done in all proposed 

models of quantizer. Firstly, we introduce the nonuniform model of quantizer. The idea 

behind the model we propose is found from the fact that quantizers with N=5 levels are 

not observed for the fixed-length code words [1], therefore we design it for the variable-

length code words using the VLC Huffman code. Moreover, Lloyd-Max’s algorithm is 

utilized to achieve the highest performance of the proposed nonuniform quantizer, since it 

provides the optimal performance for any number of quantization levels and is 

particularly efficient for low number of quantization levels. 

Furthermore, we have proposed the uniform quantizer with dead-zone which is located in 

the centre of the quantizer characteristic and involves zero level [8]. In particular, the 

optimal choice of the dead-zone improves SQNR performance of the uniform quantizer [7]. 

We have introduced this model encouraged by the fact that Huffman code can be effectively 

implemented on the available outputs. The uniform quantizer is designed when two 

criterions are satisfied: the criterion of minimal distortion and the simultaneous criterion 

of minimal distortion and minimal bit rate. Hence, our analysis is focused on determining 

the values of Δ and Δ1 that respectively define the step size and the dead-zone in uniform 

quantizer in accordance with the aforementioned criteria.  
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We applied our models in speech coding algorithms based on forward adaptation 

technique. It is known that speech signal modeled by Laplacian distribution has a wide 

dynamic range [9]. Therefore, forward adaptation is used in order to provide the appropriate 

performance in the entire range of input variances of interest. Situation where the forward 

adaptation outperforms the backward adaptation in terms of SQNR performance by 1 dB is 

shown in [4].  

The obtained theoretical results indicate that proposed quantizers offer improved 

performance in comparison to the theoretical solutions suggested so far. Moreover, 

among the analyzed models designed with VLC Huffman code, the most suitable for 

practical application is the uniform dead-zone quantizer which satisfies two simultaneous 

conditions. More specifically, the advantage of the uniform dead zone quantizer over the 

proposed Lloyd-Max quantizer is confirmed on the basis of special criterion for choosing 

the best quantizer. Also, it will be shown that it outperforms the conventional uniform 

quantizer having N=5 levels. Additionally, we performed experiments on speech signal in 

order to test the performance of the proposed quantizers in a real environment. 

The remainder of this paper is organized as follows: in Section 2 the proposed models 

of quantizer along with the numerical results are presented. In Section 3 forward 

adaptation of the presented quantizers is performed. Section 4 summarizes experimental 

results and finally we give concluding remarks in Section 5. 

2. DESCRIPTION OF MODELS 

An N-level scalar quantizer Q is specified by the parameters referred to as decision 

thresholds t1, …, tN-1 such that t0= -∞ < t1 < …< tN-1 < tN = ∞ and ti∈R, and representative 

levels Y={y1, y2, …, yN}, such that y1 < y2 <…< yN, where N is a codebook size. Quantization 

cells denoted with αi are defined by αi = (ti-1, ti] i= 1,…, N. Each cell αi is represented by the 

level yiαi. If the input signal value x falls into the interval (cell) αi, that value is quantized 

by the level yi. Hence, a scalar quantizer can be described by a function Q: R → Y that maps 

the value x into the level yi where Q(x) = yi, for x ∈ αi. In addition, for the assumed nonlinear 

source at the input, cells α2,…, αN-1 form the granular region and are called granular cells 

while α1 and αN constitute an overload region and are called overload cells.  

We assume throughout this paper, that the information source is memoryless and 

Laplacian with zero mean and variance σ
2
. The probability density function of this source is: 
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An important objective measure of quantizer performance is signal to quantization 

noice ratio, which can be determined from:  

  
2

10SQNR 10log
D
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where D is distortion inserted by the quantizer.  

A design procedure of the proposed scalar quantizers, nonunform and uniform dead-

zone quantizer, having equal number of representational levels (N=5) will be described in 
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the following subsections. Both quantizers are designed for the case of unit variance 

(σ
2
=1). 

2.1. Nonuniform quantizer 

The main idea displayed here includes the design of optimal quantizer for a given N, 

i.e. Lloyd-Max’s quantizer, followed by the incorporation of Huffman code at its output. 

A nonuniform quantizer with N=5 levels is illustrated in Fig. 1. The proposed quantizer is 

symmetrical and involves zero level y3. Due to the symmetry thresholds and the levels in 

the negative part of quantizer’s characteristic are symmetrical to those in the positive part, 

i.e. -t2=t3, -t1=t4 and -y2=y4, -y1=y5. It is obvious that the design of the proposed model of 

quantizer is completed by determining only the positive thresholds and levels, in 

accordance with the criterion of minimal distortion or maximal SQNR. 

 

Fig. 1 The proposed nonuniform quantizer 

Lloyd-Max’s algorithm is implemented using the following algorithm: 

Step 1. Define the initial values for thresholds {t3 
(0)

, t4 
(0)

}
 
and levels {y4 

(0)
, y5 

(0)
}. 

Step 2. New values for levels {y4, y5} and thresholds {t3, t4} are iteratively calculated 

using: 
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Step 3. Lloyd-Max’s algorithm interrupts when next iteration does not produce any 

change in distortion. 

The distortion D is the measure of the irreversible error incurred by the quantization 

procedure. The total distortion can be decomposed into granular distortion and overload 

distortion. Granular distortion Dg is given by:  
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while overload distortion Do is defined by: 
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It is obvious that D=Dg+Do. Now, according to equation (2) SQNR can be easily determined.  

To be able to fully assess performance of the quantizer, it is necessary to determine its 

bit rate R: 
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where li is the length of Huffman codeword corresponding to the level yi and pi is the 

probability of yi occurring:  
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Specifically, the quantizer outputs are encoded with Huffman code since it can provide 

the optimal length of codewords for a given probability model [2].  

2.2. Uniform dead-zone quantizer 

The quantizer design in this case is quite different than the one described in previous 

subsection. Huffman code is exploited to represent the quantizer outputs as well. In Fig. 2 

we illustrate the proposed symmetrical uniform dead-zone quantizer with odd number of 

levels N=2L+1, where for the considered case L=2 [8]. All quantization cells are of equal 

size Δ in the proposed uniform quantizer, except cell Δ1= (-t1, t1) which defines the dead-

zone. The dead-zone is located in the quantizer characteristic so that it involves zero level 

y0. Since the quantizer is symmetrical, we can observe only positive thresholds and levels. 

In addition, tmax represents the upper bound between granular and overload region. 

 

Fig. 2 The proposed uniform dead-zone quantizer 

It is obvious that the total distortion D, inserted by the uniform dead-zone quantizer, 

can be obtained as the sum of the distortions in the inner (dead-zone) DDZ and the outer 

part DOP:  
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Substituting D in equation (2) we obtain SQNR, while the bit rate, as in preceding case, 

can be calculated from equation (7), using the following probability model: 
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It is evident from equations (9)-(13) that parameters t1 and Δ play an essential role in the 

uniform dead-zone quantizer performance. Additionally, the performance is investigated 

when following criterions are fulfilled: the criterion of minimal distortion and the simultaneous 

criterion of minimal distortion and minimal bit rate. Accordingly, the appropriate values of t1 

and Δ are numerically determined with respect to the mentioned criteria.  

2.3. Numerical results 

In this subsection we present numerical results to compare the performance of the 

proposed quantizers. Table 1 summarizes the performances of the joint Lloyd-Max quantizer 

and Huffman encoder (QLM), along with the uniform dead-zone quantizer which fulfills 

the criterion of minimal distortion (QDZ1) and the uniform dead-zone quantizer which 

satisfies the criterion of minimal distortion and minimal bit rate at the same time (QDZ2).  

Table 1 Theoretical performance of the proposed quantizers with N=5 levels 

σ2=1 Δopt Δ1opt p(y1)= p(y5) p(y2)=p(y4) p(y3) D SQNR[dB] R[b/s] 

QLM - - 0.0561 0.2200 0.4478 0.1198 9.2152 1.9966 

QDZ1 1.26 0.8914 0.0448 0.2214 0.4676 0.1272 8.9556 1.9331 

QDZ2 1.26 1.3370 0.0327 0.1616 0.6115 0.1442 8.4096 1.6808 

Regarding the quantizer QDZ1, it is a special case of the proposed uniform dead-zone 

quantizer when the parameters Δ and Δ1 are chosen so that the highest quality of the 

quantized signal is provided. In this case, the performances of uniform dead-zone 

quantizer are searched for in Δ range from 0.1 to 2 with step 0.01 and in t1 range from 

t3
LM

 to 2 t3
LM

 with step t3
LM

/10. The optimal threshold value of quantizer QLM is denoted 

by t3
LM

. Based on the conducted performance analysis, the optimal values of Δ and Δ1 

(denoted by Δopt and Δ1opt (t1opt)) are selected. 

In addition, the quantizer QDZ2 is another special case of the uniform dead-zone 

quantizer, but with more complex design than the preceding one. More specifically, it 

minimizes the bit rate under the constraint that the maximal possible increasing in SQNR 

is achieved for a given type of quantizer. For this scenario, the performance analysis of 

the uniform dead-zone quantizer is carried out in t1 range from t1opt to 2 t1opt with step t1opt 

/10, while the step size is assumed to be Δ=Δopt. Selection of the optimal uniform dead-

zone quantizer is presented in Table 2, where highlighted values denote an optimal quantizer 

design.  
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Table 2 Selection of the optimal uniform dead-zone quantizer  

σ2=1 SQNR [dB] R [b/s] 

t1= 0.4457 8.9556 1.9331 

t1= 0.4903 8.9231 1.8761 

t1= 0.5348 8.8482 1.8225 

t1= 0.5794 8.7345 1.7723 

t1= 0.6240 8.5865 1.7251 

t1= 0.6685 8.4096 1.6808 

t1= 0.7131 8.2088 1.6392 

t1= 0.7577 7.9896 1.6002 

t1= 0.8023 7.7566 1.5635 

t1= 0.8468 7.5141 1.5291 

t1= 0.8914 7.2658 1.4968 

 

The best quantizer in Table 2 is chosen by using the following criterion:  

 
e

e

Δ Δ
> = δ

ΔSQNR ΔSQNR

R R
.    (14) 

The left side of inequality is the slope of the curve R(SQNR) found among quantizers 

designed for different values of threshold t1, while the right side of inequality corresponds 

to the expected value of the slope found among standard Lloyd-Max’s quantizers with 

N=2 and N=4 levels and amounts to 0.2203 [1]. In other words, this criterion compares 

two quantizers (the first one has a higher SQNR) and quantizer having the best 

performance is selected in the following way: if the slope value is higher than the 

expected one the second quantizer is a better solution, otherwise the first one is preferred. 

Highlighted raw in Table 2 corresponds to the quantizer which satisfies criterion of 

minimal distortion and minimal bit rate at the same time.  

SQNR versus bit rate R for proposed quantizers is shown in Fig. 3. Blue line 

represents the standard Lloyd-Max quantizers with N=2 and N=4 levels having the bit 

rates R=1 b/s and R=2 b/s, respectively. It can be seen that SQNR curve increases linearly 

when the bit rate is raised for 1 b/s, and has a slope of 4.54 dB [1, 2]. The marked points 

above the curve indicate the obtained performance of the discussed quantizers, i.e. QLM, 

QDZ1 and QDZ2 (as in Table 1). Note that the proposed models of quantizer provide improved 

performance when compared to the theoretical solution suggested so far. Particularly, the 

quantizer QLM gives 1.69 dB higher SQNR for the respective bit rate, in comparison to the 

expected SQNR value (specified by a point on a blue curve). Additionally, the gains of 

quantizers QDZ1 and QDZ2 are 1.72 dB and 2.32 dB, respectively. 

Furthermore, we will determine the best quantizer solution from the aspect of practical 

application, when VLC Huffman code is used. Namely, when we compare quantizers QLM 

and QDZ2, it may be noted that when the bit rate is reduced by 0.32 b/s, SQNR drops by 

0.81 dB. One can perceive, by using 4.54 dB/bit rule, that with the same reduction of the 

bit rate, SQNR reduction of 1.43 dB is achieved. This result proves that the quantizer 

QDZ2 has a better performance in regard to the quantizer QLM. Furthermore, the advantage 

of the quantizer QDZ2 over the quantizer QLM can be confirmed by applying the 

recommended criterion (14), where the value of the slope amounts 0.392.  
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Fig. 3 Attained performances of different quantizers 

Additionally, it will be beneficial to compare the attained performance (SQNR and R) 

of the quantizer QDZ2 with the ones of N=5 levels uniform scalar quantizer (in this case the 

decision thresholds are equally spaced by Δ and the representative levels are the 

midpoints of the respective cells) followed with Huffman encoder. Particularly, it 

provides the following: SQNR=8.76 dB and R=1.92 b/s. Now, using the criterion (14) the 

slope value of 0.69 is obtained, showing the superiority of the proposed quantizer QDZ2 

compared to the uniform one having equal number of levels.  

3. FORWARD ADAPTATION  

Forward adaptation performed on frame-by-frame basis is often reported in literature 

[1, 4], hence we will give only a brief overview. The block diagram of the forward adaptive 

coding scheme is shown in Fig. 4. The proposed coding scheme involves a buffer, a variance 

estimator, a log-uniform quantizer with L levels for the quantization of frame variance and 

an adaptive quantizer with N levels.  

The quantizer is adapted to the short-term estimate of the input signal variance for 

each frame. The following procedure is conducted. Frame consisted of M input samples is 

stored in buffer and variance σ
2
 is determined in the variance estimator. The quantization 

of σ
2
 is employed using the log-uniform quantizer (QLU). The main reason for utilization 

of such a quantizer lies in the fact that it provides better SQNR performance in a wide 

range of input variances in comparison to the uniform one [9].  

In this paper, we have designed a log-uniform quantizer with L levels to quantize 

logarithmic variance 10log10 (σ
2
/σ0

2
) in the range (-30 dB, 30 dB) with respect to the referent 

variance σ0
2
. Thresholds of the considered log-uniform quantizer are determined as: 

  3[dB] 0i Ll i   , i= 0, 1,…, L, (15) 

while levels are determined as: 
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where ΔL [dB] = 60/L is the quantizer step size  

In linear domain, thresholds and levels are respectively given by: 
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It is clear that the equality QLU(σ
2
)=

 
σ i holds for σ

2 ∈ (σi-1, σi). 

 

Fig. 4 Forward adaptive coding scheme 

Furthermore, the quantized value of the frame variance is used to update the 

parameters of the adaptive quantizer. The decision thresholds and representative levels of 

the adaptive quantizer, for σ
2 ∈ (σ i-1, σ i), can be respectively determined as t

 a
j = gi t  

f
j, , 

j=0, 1, …, N and y 
a
j = gi  y  

f
j, j=1, …, N, where 

ig  i


. With  t  
f
j, j=0, 1, …, N and y  

f
j,   

j=1, …, N we denote thresholds and levels of the non-adaptive (fixed) quantizer, respectively. 

After that, M samples within the current frame are quantized using the adaptive quantizer. 

Indices I and J are transferred to the receiver, as depicted on Fig. 4. Index I denotes 

the codeword index obtained as the result of the encoding procedure. Index J carries 

information about the level of the log-uniform quantizer that has been used for the frame 

variance quantization. Note that J is transmitted as additional or side information and 

involves log2 L bits per frame.  

Consequently, bit rate for adaptive quantizer is given by: 

 2loga f L
R R

M
  . (19) 

where fR denotes the bit rate of fixed quantizer.  

Fig. 5 plots SQNR of several forward adaptive quantizers across the entire range of 

input variances of interest. The results are provided when L=32 levels log-uniform 

quantizer is employed for the frame variance quantization, while the referent variance is 

fixed at σ0
2 

= 2 × 10
-3

. The results for QLM, QDZ1 and QDZ2 comply with theoretical results 

shown in Fig. 3. It can be observed that SQNR behaves fairly constantly in the whole 
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variance range. Note that our models exceed SQNR curve of the standard Lloyd-Max 

quantizer with N=4 levels (QLM,N=4), as expected.  
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Fig. 5 SQNR dependence on the input variances  

4. EXPERIMENTAL RESULTS 

In this section, the analysis on real speech signal is performed with a goal to verify the 

theoretical results obtained in Section 2. In our experiment, the input speech is divided 

into frames of length M. We assumed that the input signal consists of a finite number of 

speech frames F.  

Experimental values of signal to quantization noise ratio within each of F frames are 

determined from the expression: 
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where (σj
e
)

2
 is the average variance of the j-th frame, j=1,…,F:  
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and Dj
e
 is the average distortion for the j-th frame, j=1,…,F: 
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where xji  and yji
a
 are samples of the considered input speech and the outputs of the 

adaptive quantizer, respectively.  
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Finally, we performed averaging of the signal to quantization noise ratios in equation 

(20) over all frames to obtain experimental results:  

 
1

1
SQNR SQNR

F
ex e

j
jF 

  . (23) 

Table 3 contains experimental results, together with the values of R
a
 for several types 

of quantizers. Experimental results are obtained using the speech signal sampled at 16 

kHz (approximately 1 milion of speech samples in total) with different frame lengths (M = 

80, 160, 200, 240 and 320). We observe that the experimental results are in agreement 

with the theoretical results presented in this paper (difference is less than 1 dB). Hence, 

the correctness of our models is ascertained. Note that bit rate slightly increases when the 

frame length decreases. In addition, one can perceive that the highest SQNR
ex

 values are 

obtained for M=80. This is expected as the parameters of the quantizer are updated more 

frequently.  

Table 3 Experimental results and bit rate for the proposed quantizers  

                                                  QLM                                 QDZ2                                 QLM,N=4 

SQNRex[dB] Ra [b/s] SQNRex[dB] Ra[b/s] SQNRex[dB] Ra[b/s] 

M=80 10.2426 2.0591 9.1815 1.7433 8.8000 2.0625 

M=160 10.2020 2.0278 9.0453 1.7121 8.7608 2.0313 

M=200 10.1799 2.0216 9.0072 1.7058 8.6811 2.0250 

M=240 10.1584 2.0174 8.9826 1.7016 8.7195 2.0208 

M=320 10.0944 2.0122 8.9385 1.6964 8.6118 2.0156 

5. CONCLUSION 

In this paper, a joint design of the quantizer and Huffman encoder is presented and its 

performances with N=5 quantization levels have been analyzed and compared to the 

standard quantizer solutions. It is found that the proposed joint Lloyd-Max quantizer and 

Huffman encoder, as well as uniform dead zone quantizer significantly improve 

performance of the theoretical solutions exposed so far, in terms of the gains in SQNR, 

mainly due to the incorporation of variable-length code. The best quantizer solution 

among the proposed ones is the uniform dead-zone quantizer satisfying the criterion of 

minimal distortion and minimal bit rate at the same time. In addition, forward adaptation 

of the developed quantizers is performed in order to ensure the appropriate SQNR in a 

wide range of input variance. Finally, we have provided the experimental results on a real 

speech signal to validate the theoretical results. Therefore, we can conclude that the 

proposed quantizers are efficient solutions for compression of speech signal, especially 

the uniform dead-zone quantizer which is found to outperform the other proposed models.  
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