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Abstract. This paper presents two approaches to analytical design of nonlinear control 

systems using transformation of plant equations into quasilinear forms or into Jordan 

controlled form. Settlement expressions of corresponding analytical methods of control 

systems design are obtained as results. These methods can be applied if the plant’s nonlinear 

functions are differentiable, the plant is controllable and the additional conditions are 

satisfied. The suggested methods provide asymptotical stability of the equilibrium in a 

bounded domain of the state space or global stability and also desirable performance of 

transients. Examples of control systems design by the suggested analytical methods are given. 
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1. INTRODUCTION 

Control design problem for nonlinear plants, despite of an old history of development, 

still has no exhaustive solution. It has been considered in many works. However, the 

majority of the proposed methods have a bounded scope. Therefore, the new control design 

methods for nonlinear plants are actual. The transformation method of the plant equations to 

some simple form is widely used for solving linear and nonlinear control systems problem. 

This approach simplifies the solution of this problem and makes it analytical. In nonlinear 

cases the plant equations are transformed to the various forms. It can be normal canonical 

control form [1–4], triangular form [5, 6], Lukyanov-Utkin regular form [7], quasilinear 

form [8 – 10], Jordan controlled form (JCF) [11 – 13] and others. Transformation of the 

humanoid robot equations to a controllability canonical form has allowed designing a control 

system which compensates influence of external disturbances [2, 3] and parameters 
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uncertainties [3]. If the plant equations are represented in the triangular form it is easy to 

apply the backstepping method to design stabilizing control or to design an adaptive control 

[5, 6]. The Lukyanov-Utkin regular form of the plant equations allows decoupling the high 

dimension design problem on several tasks of the smaller dimensions [7].  

The purpose of this paper is the representation of rather effective analytical approaches 

to the design of nonlinear control systems on the basis of transformation of the plants and 

systems equations to the quasilinear or Jordan controlled form. These approaches allow 

analytically finding controls, which provides stability of the system's equilibrium [9], desired 

duration of transients and full compensation of influence of bounded external disturbances [12, 

13]. Mathematical basis of these approaches are differentiability plant nonlinearities, plant 

controllability and independence from the integration way of the curvilinear integral [14]. 

This article is organized as follows. The problem of nonlinear control systems design 

is given in chapter 2. Transformation of the nonlinear equations of dynamic plants and 

systems to the quasilinear form is presented in chapter 3. Features of this transformation 

and the suggested analytical method of nonlinear control systems design on the basis of 

this form are given in chapter 4. The approach to design problem of the nonlinear control 

systems on the basis of a Jordan controlled form (JCF) is considered in chapter 5. The analysis 

shows: the equations of many real nonlinear plants have JCF or may be represented in JCF by 

simple transformation. In the final chapter the corresponding examples of control systems 

design are resulted. 

2. STATEMENT OF CONTROL SYSTEM DESIGN PROBLEM 

Assume some controlled plant is described by the equation 

 0( , )x f x u ,  (1) 

where nx R  is a measured state vector; ( , ) nf x u R  is a nonlinear differentiated 

vector-function; 0 0 ( )u u x  is scalar control. Let be 0( , )x x t u  is a vector that 

describes the unperturbed motion of the system (1); 0u  is appropriate control. Enter the 

deviations x x x   and 0 0u u u  . The equations of the system (1) in deviations are 

recorded in a next form: 

 ( , )x f x u ,    (2) 

where 0 0( , ) [ ( , ) ( , )]f x u f x x u u f x u     is a nonlinear differentiable vector-function. 

Usually, when 0u  the equilibrium 0x   of the plant (2) is unstable or the 

processes in this plant are unsatisfactory. The control system design problem consists in 

the definition of the control ( )u u x  so that equilibrium 0x   of the plant (2) was 

asymptotically stable, at least, in an bounded domain  , i.e. 

 0lim ( , , ( )) 0
t

x t x u x


 , 0 0
nx R  , nx R ,  (3) 

where 0  is a bounded attraction domain of the equilibrium 0x  . This control should 

provide also desired duration and character of transients.  
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The method of the design problem solution depends, first of all, on properties of the 

nonlinear vector-function ( , )f x u . In the beginning we shall consider as the quasilinear 

form of the equation (2) is applied to this purpose and then – the Jordan controlled form. 

Conditions on the nonlinear vector-function ( , )f x u , at which the design problem has the 

solution, will be shown. 

3. CONTROL SYSTEM DESIGN USING QUASILINEAR FORM 

Let the nonlinear vector-function ( , )f x u  in equation (2) such that 

 (0, 0) 0f , 
( , )

( )i
iu

f x u
f x

u





, ,nx R x M    .  (4) 

where M
 is a number dependent on the sizes of domain  ; x  Euclidean norm. 

Before passing to the solution of the statement problem, we shall define the term 

«quasilinear form» of nonlinear functions and nonlinear vector-functions [9]. 

Suppose some nonlinear function 1( ) ( , , )nf x f x x  of variables 1, , nx x  is 

differentiable. Then it can be presented always as follows: 

 
1( ) ( ) (0) [ ( ) ( )] (0)T

nf x a x x f a x a x x f    ,  (5) 

where ( )Ta x  is some functional n-vector and ( )ia x  are its components depend on a way 

of integration of the partial derivatives ( ) ( ) /i if x f x x    from a point 0x   to a point 

x. Various ways of integration give various quasilinear representations of the nonlinear 

function [8, 9, 14]. We shall use the following expressions for definition of the 

components ( )ia x : 

 

1

1 1

0

( ) ( , , ,0, 0)I
i i i ia x f x x x d   , 1,i n ,   (6) 

where θ  is a scalar integration variable. 

The validity of the expressions (5), (6) will be shown on examples. Let us consider 

function 
2 3 4

1 2 2 3 1 3( )f x x x x x x x     , where 1 2 3, ,x x x  there are independent variables 

and  is some constant. The function f
*
(x) is differentiable; therefore there are its partial 

derivatives:  

 2 3
1 2 1 3( ) 4f x x x x   , 3

2 1 2 3( ) 2f x x x x   , 2 4
3 2 3 1( ) 3f x x x x   ,   (7) 

and (0)f   . Substituting the received expressions (7) for partial derivatives in the 

formula (6), we shall find: 1( ) 0a x  , 2 1 2( )a x x x  , 
4 2

3 1 2 3( )a x x x x   , i.e. the vector 
4 2

1 2 1 2 3( ) [0 ]Ta x x x x x x   . The received vector and the formula (5) give the consider 

nonlinear function ( )f x .  

The expressions (5) and (6) are fair and in relation to differentiated vector-functions 

with replacement of a vector ( )Ta x  by a corresponding functional matrix. Let, for example, 

1 2 3[ ]Tx x x x  and 
2 3

2 1 2 3 1 3 1 3( ) [3 4 7 2sin 1,2 ]Tf x x x x x x x x x     . The expressions (7), 

(6) applied to the components of this vector-function give a matrix 
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1

1 2

2
1 3

4 3 0

( ) 2 ( ) 0 7

0 0 1,2

x

A x x x

x x

 
 

  
  

, 

where 1 1 1( ) (sin ) /x x x  . The validity of the expression ( ) ( ) (0)f x A x x f    is evidently. 

Though quasilinear representations of a differentiable function and a vector-function 

are not unique, but any quasilinear form describes the given nonlinearity precisely, in 

difference, for example, from «the first approximation» [4, 5].  

The vector-function ( , )f x u  from the equation (2) satisfies the conditions (4), therefore 

according to expressions (5), (6) this equation can be submitted as follows:  

 ( ) ( )x A x x b x u  , ,nx R x M    .  (8) 

Here ( ) [ ( )]i jA x a x  is a functional n n -matrix, ( ) [ ( )]ib x b x  is functional n-vector and 
( ) ( )i iub x f x . The equation (8) is the quasilinear form of the equation (2). 

In summary, we shall emphasize: the right parts of the equations (2) and (8) are 

completely identical with all ,nx R x M    , i.e. the quasilinear form (8) is the 

exact representation of the nonlinear differential equations such as (2), satisfying conditions (4). 

The quasilinear form of nonlinear equations is close to linear; therefore the well developed 

analytical methods of the linear control theory can be applied to the problem solution of 

the nonlinear systems design.  

The control at equation (8) is searched also in the quasilinear form: 

 
1

( ) ( ) ( )
n

T
i i

i

u x k x x k x x


    , ,nx R x M    .  (9) 

Here ( )ik x  are some nonlinear functions. Next equation follows from the expressions (8) and 

(9): 

 ( )x D x x ,  (10) 

where 

 ( ) ( ) ( ) ( )TD x A x b x k x  .  (11) 

The characteristic polynomial of the functional matrix ( )D x  (11), in view of the identity 

det( ) det (adj )T TM bk M k M b    [9], it is possible to present as follows: 

 ( , ) det( ( )) ( , ) ( )adj( ( )) ( )TD p x pE D x A p x k x pE A x b x      

or 

 
1

( , ) ( , ) ( ) ( , )
n

i i

i

D p x A p x k x B p x


  .  (12) 

Here adj is the adjunct matrix [9, 14] and polynomials are determined by next expressions 

 
1

0

( , ) det( ( )) ( )
n

n i
i

i

A p x pE A x p x p




     ,  (13)  
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1

0

( , ) adj( ( )) ( ) ( )
n

j
i i i j

j

B p x e pE A x b x x p




    , 1,i n ,  (14) 

where 1 [1 0 0]e  , 2 [0 1 0]e  , , [0 0 1]ne  .  

Let, according to stability and necessary performance of the closed nonlinear system, the 

desirable characteristic polynomial of the matrix ( )D x  from equation (10) be appointed the 

following kind: 

 1
1 1 0( )    
    n n

nD p p p p .   (15) 

The polynomial (15) satisfies the Gurvits criteria. If the polynomial (15) is to substitute in 

the equation (12) instead of the polynomial D(p,x), a polynomial equation is formed 

which is equivalent in view of expressions (13), (14) to the following algebraic system:  

 

10 20 0 01

11 21 1 2 1

11 1 2 1 , 1

n

n

n nn n n n

k

k

k
  

      
                
    

         

.   (16) 

Here ( )i i x    are the coefficients of the polynomials difference: ( ) ( , )D p D p x    
1

0 1 1( ) ( ) ( ) n
nx x p x p 
    . In the system (16) the arguments of the functions 

are lowered for brevity.  

Solution of the algebraic system (16) defines the functions ( )ik x  from control (9) of 

the closed system (2), (9) or the system (10). The algebraic system (16) has the solution if 

the next condition satisfies: 

 1det ( ) det[ ( ) ( ) ( ) ( ) ( )] 0nU x b x A x b x A x b x  , ,nx R x M    . (17) 

Note, the condition (17) is the controllability condition of the nonlinear plant (8) [9, 

10]. If the matrix A  and the vector b  in the equation (8) are constants then the inequality (17) 

passes in the well known Kalman controllability condition. 

Thus, if the vector k(x) (9) is determined by the expressions (13) – (16) the constant 

matrix D(0) and the equilibrium x  0 of the nonlinear closed system (10) are stable. The 

majority of the control systems designed by this method are asymptotically stable in the 

bounded domain   R
n
. Only in some cases the equilibrium x  0 of this system is 

globally asymptotically stable [9]. Hence, if the plant equations are transformed to the 

quasilinear form, then expressions (9) - (16) allow finding control by which the condition 

(3) is carried out. Bounded attraction domain 0 from the condition (3) can be found using 

Lyapunov's function, constructed for stable system (0)x D x  or by computer simulation of 

the close system (10). It is easy to see, that expressions (13) – (16) can be applied to design of a 

modal control for linear plants with constant parameters. But in this case they provide the 

global stability of the closed system. This approach gives possibilities to design of the control 

systems which the equilibrium x  0 are globally stable. Corresponding method is given at [15].  

The application of the quasilinear form and the expressions (9) – (16) to control systems 

design shall be shown on an example below 
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 4. CONTROL SYSTEM DESIGN USING JCF OF PLANT EQUATIONS   

Suppose the equations (2) of the plant (1) in the scalar form look like: 

 1 1( , , )i i ix x x   , 1,1  ni ,  (18) 

 1( , , )n n nx x x u   ,  (19) 

where 1 1 1 1 1 1( , , ) ( ) ( ) ( )i i i i i i i i ix x f x x f x x          , 1, 1i n   and 
0( , )nf x x u u  0( , )nf x u  

( )n x u    are differentiable n i  time nonlinear function; 1[ ]T
i ix x x is a subvector and 

nx x  evidently; ( )u u x  is the search control. The controllability conditions of the system 

(18), (19) can be written down as follows: 

 1 1

1

( , , )
0i i

i

x x

x






  


, 1,1  ni , nx R ,  (20) 

where   there is any positive number. The domain   includes the equilibrium 0x  .  

Definition. If the system of equations (18), (19) satisfies the conditions (20), it is called "Jordan 

controlled form" [9, 11]. 

Evidently, the Jordan controlled form is a generalization of the known triangular form of 

the equations of nonlinear plants [5, 6]. 

To solve the control system design problem, in the first, the transformation of the state vector 

x  of the system (18) – (20) to new state vector w is determined as follows  

 1 2( ) [ ( ) ( ) ( )]T
nw w x w x w x w x   ,  (21) 

where 

 1 1w x , 
1

1
1 1 1 1

1

( ) ( ) ( )
i

i
i i i i i

w
w x x w x

x




    

 


  


 , ni ,2 ,  (22) 

and i are some constants. The transformation ( )w x  (21), (22) is bounded and is convertible by 

virtue of conditions (20), i.e. in the domain   R
n 

there is a bounded inverse transformation 

( )x x w  such that ( ) ( ( ))x w x w x x  .  

The stabilizing control ( )u u x  for plant (18), (19) is determined by the expressions  

 1
1 2( ) ( )[ ( ) ( )] ( )n n nu x x x w x x     , x ,  (23) 

 
1

1
1

1 1

( ) ( )
( )

n
n i i

in i

w x x
x

x x




 

 
  

 
 , 

1

2 1

1

( )
( ) ( )

n
nw x

x x
x



 

 


  


 , x ,  (24) 

where 0n    ; variables ( )nw x  are determined by the expressions (22) with 0i    , 

1, 1i n   [11 – 13]. 

The close system (18) – (20) with control (22) – (24) is described in the new variables 

( )i i iw w x , 1,i n  by the expressions 
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 nw w  , 

1

2

1 0

0 0

1

0 0

n

n

 
 


  
 
 

 

.  (25) 

Note, the condition (20) ensures the existence of the stabilizing control (23) in the domain 

Ω nR . The matrix n  (25) coincides with the n n  cell Jordan [16, p. 142] if i   , 

1,i n . Just therefore the system of equations (18), (19) is called "Jordan controlled form", if 

condition (20) is carried out in some domain Ω nR . Evidently, the system (25) is asymptotically 

stable if 0i    , 1,i n . Since the transformation (21) – (22) is convertible and bounded, 

then the equilibrium 0x   of the system (18), (19), (22) – (24) with 0i    , 1,i n  also 

asymptotically stable in the domain Ω nR .  

So, if the nonlinear plant equation (2) is represented in the JCF (18), (19) and conditions 

(20) are carried out, then the expressions (21) – (24) give the analytical design method of the 

nonlinear control systems. The transformation method of the nonlinear equations (1) general 

view to JCF is not known. However in practice very much many plants can be transformed 

to JCF by change of indexes of their variables. In some cases the methods suggested in [6, 7] 

can be applied for transformation of the equations (1) to JCF. 

Transformation of the nonlinear plant equations to this form allows to design by the 

analytical way not only the stabilizing controls such as (23), but also the control optimal 

in sense of uncertain nonlinear-quadratic criteria [17]. 

6. EXAMPLES 

Example 1. The plant is described in deviations by the equations:  

 1 2x x , 2 21 1 23 3sinx a x a x   , 3 2 2 3 3( ) ( )x x x u    .  (26) 

where a21, a23  0 are numbers, 2 2( )x , 3 3( )x  are differentiable functions. The state 

variables 1 2 3, ,x x x  are measured. To find the control ( )u k x x   by which the equilibrium 

point 0x   of the plant (26) will be asymptotically stable.  

In the equations (26) the vector-function f (0,0) = 0, therefore according to the formula 

(6) the quasilinear equation (8) corresponds to the equations (26) with  

 
1 23

32 2 33 3

0 1 0

( ) ( ) 0

0 ( ) ( )

A x x a

a x a x

 
 

 
 
   

, 

0

( ) 0

1

 
 


 
  

b x ,   (27) 

where 1
1 21 1( ) sinx a x x   , 1

3 ( ) ( )j j j j ja x x x  , 2, 3j  . 

It is easy to see that the equation (8) in view of the expressions (27) is the exact 

representation of the equations of the nonlinear plant (26). In this case 
2
23det ( ) 0U x a   , the 

condition (17) is carried out, i.e. the solution of the design problem exists.  

Passing to its definition, we find by the formulas (13) and (14) the polynomials: 
3 2

33 3 1 0( , ) ( ) ( ) ( )A p x p a x p x p x    , 1 23( , )B p x a , 2 23( , )B p x a p , 
2

3 1( , ) ( )B p x p x  , 

where 1 23 32 2 1( ) ( ) ( )x a a x x   , 0 33 3 1( ) ( ) ( )x a x x    . The desirable polynomial ( )D p   
3 2

2 1 0p p p      satisfies to the Gurvits criterion and the system (17) looks like here: 
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0 33 3 123 1 1

23 2 1 23 32 2 1

3 2 33 3

( ) ( )0 ( )

0 0 ( ) ( )

0 0 1 ( )

a x xa x k

a k a a x x

k a x







      
   

      
           

. 

The solution of this system are functions: 3 2 33 3( ) ( )k x a x   , 
1

2 23 1 1( ) ( ( ))k x a x     

32 2( )a x , 
1

1 23 0 2 1( ) ( ( ))k x a x      . In according to the expression (9) this solution leads to 

control:  

  
1 1

23 0 1 2 1 23 1 1 2 2 2 2 3 3 3( ) sin ( ( )) ( ) ( )u x a x x a x x x x x               .  (28) 

It is easy to establish the characteristic polynomial ( , )D p x  calculated under the expression 

(11) is equal to the desirable polynomial ( )D p
. Hence, the equilibrium point 0x   of the 

closed system (26), (28) is asymptotically stable in some bounded domain [9]. 

The closed system was simulated in MATLAB with 2 2 2( ) 3arctg( )x x  , 3 3( )x   

39arctg( )x ; 21 2a  , 23 2.5a  ; 0 81  , 1 27  , 2 9  , 3 1   and 0 [0.25 3 0]x  . 

Schedules of the variables of the designed system (26), (28) are shown in Fig. 1. These 

schedules allow concluding, that the designed system is asymptotically stable and duration of 

the transients does not exceed 4.0 second. The schedule of the control signal is shown in Fig. 

2. Apparently, the control signal is bounded during all transient. 

 
Fig. 1 Schedules of the variables 

   
Fig. 2 Schedule of the control u  
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Example 2. Suppose a nonlinear plant is described by the equations 

 1 2 3x x x u  , 2 3x x , 2
3 2 1(1 )x x x  .  (29) 

Using the design method with application JCF to find the control ( )u x  by which the 

equilibrium point x  0 of the plant (29) will be asymptotically stable and time response 

not more then 3.5 second.  

The form of the equations (29), evidently, does not meet to the form of the equations 

(18), (19). That the equations (29) had this form, we shall designate the state variable so: 

1 3x x , 2 1x x , 3 2x x . The resulting equations of the plant look like: 

 1 2 1( )x x x   ; 2
2 1 3 2(1 ) ( )x x x x    ; 3 1 2x x x u  .  (30) 

Equations (30) satisfy the conditions (20), since 1 2( ) / 1x x    and 
2

2 3 1( ) / (1 ) 1x x x      

for all 3x R . Therefore, equations (30) have JCF, and the design task has a solution.  

According to the proposed JCF method the transformation (21) is determined by the 

expressions (22), (30) and looks like: 

 1 1w x , 2 2 1 1w x x  , 2
3 1 3 1 2 2 1 2 1(1 ) ( )w x x x x       .  (31) 

The transformation (31) is not singular, convertible and bounded for all 3x R , x   . 

The functions 1( )x  and 2 ( )x  are determined by the expressions (24), (31) and (30) as:  

 2
1 1( ) (1 )x x   , 2

2 1 3 1 2 2 1 2 1 3( ) (2 ) ( )(1 )x x x x x x        .  (32) 

Now the search control is written by the expression (23) as: 

 2
1 2 2 3 3 1( ) ( ( ) ( )) /(1 )u x x x x w x x      .  (33) 

The expressions for this control in initial designations of the plant variables are obvious 

and here are not given. Transients of the nonlinear system (30), with controls (33), (31), 

(32) are submitted on Fig. 3. These schedules are received by simulation of the designed 

system in MATLAB with 1 3  , 2 5  , 1 7   and 0 [0.2 0 3]Tx  . 

0 1 2 3
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-1

0

1

2

t

x
3x

2x

1x

 

Fig. 3 Schedules of the nonlinear system transients  
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Apparently, transient’s character of the nonlinear control systems can be changed by a 

choice of the values of the control coefficients i , 1,i n . 

Example 3. Nonlinear plant is described by the equations 

 1 1 1sin0,1x x b u  , 2
2 20,25x u a x  ,  (34) 

where b1 and a > 0 are constant parameters. To find the control ( )u x  by which the equilibrium 

0x   of the plant (34) will be asymptotically stable.  

The form of the equations (34) does not meet to the form of the equations (18), (19). 

A second order system ( ) ( )x f x b x u   can be transformed to JCF [9], if the following 

condition is carried out: 

 1 2 1 2( ) [ ( ) ( )] ( ) ( ( ) ( )) ( ) 0x x x xK x G x G x b x b x b x G x    ,  (35) 

where ( ) det[ ( ) ( )]G x f x b x , ( ) ( ) /xi iG x G x x   , ( ) ( ) /i x i ib x b x x   , i = 1, 2. In this case 

the functions 2 2 1( ) ( )sin0,1G x b x x , 1 2 2 1( ) ( )cos0,1K x b b x x  and 2
2 2 2( ) 0,25b x a x  . 

Therefore, according to a condition (35), the equations (34) can be transformed to JCF until 

1 5x    and 
2

20,25a x M     . Transformation 1 1 1 2x x b x  , 
2 2

2 20,25[( ) ]x a x a    

results the equations (34) in a kind: 1 1 1 2sin0,1( )x x b x  , 2x u . These equations have JCF 

and, using expressions (22) – (26), we find control 

 1 1 1 1 1

1 1

( )sin ( )sin ( )
( )

0,1 cos ( )

x xx
u x

b b x

    
  


, 1 1 2 5x b x   ,  (36) 

where 1 1 2( ) 0,1( )x x b x   . The attraction domain of the equilibrium is bounded in this 

case. This domain can be determined by use of the linear character of the control systems 

(25) in variables iw , 1,i n  [9]. 

6. CONCLUSION 

Representation of the equations of nonlinear plants in the quasilinear form or in the 

Jordan controlled form allows to find analytically the controls as nonlinear feedback on the 

state variables. These controls can provide asymptotic stability of the system equilibrium in 

some domain of the state space, duration and character of transients and also selective 

invariancy (astatic) to the bounded external disturbances or the control optimal in sense of 

uncertain nonlinear-quadratic criteria. Conditions of transformation possibility of the plant 

equations to the quasilinear form are very simple: nonlinear functions should be differentiable. 

Conditions of transformation to Jordan controlled form are more complex. Generally, these 

conditions are not found. However, the representation of the plant equations in the Jordan 

controlled form is not of a rigid restriction kind because the equations of the many real plants 

have this form or can be transformed to this form by replacement of the state variables. 
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