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Abstract. In this paper, it has been performed an optimization of compression factor of 

quasi-logarithmic quantizer for the case when a signal with Laplacian probability density 

function is brought on the input of quantizer. There has been proposed a new two-step 

method for determination of optimal compression factor in terms of the mean-square 

error (MSE) distortion. Two different manners for compression factor optimization have 

also been considered, by using the Muller’s iterative method and the new two-step 

method. Emphasis is placed on locating slightly less accurate but much simpler solution, 

by comparing the Muller’s iterative method and the new two-step method. Analysis of 

procedures is described in detail. 

Key words: companding quantizer, Laplacian probability density function, Muller’s iterative 

method, new two-step optimization method  

1. INTRODUCTION 

Quantization process can be performed using uniform and non-uniform quantizers. 

Uniform quantizers are suitable for signals with uniform distribution (uniform probability 

density function) due its equidistant decision intervals and representational levels. Unlike 

uniform quantizers, the non-uniform quantizers have smaller decision intervals where 

probability of input signal is high and larger decision intervals where probability of input 

signal is low [1], [2], [3]. Speech signal has non-uniform distribution and because of it, it 

is appropriate to use non-uniform quantizers for signal processing. Non-uniform quantizers 

can be designed as Lloyd-Max and companding quantizers. 

Companding concept is useful in analysis of the non-uniform quantizers with a large 

number of quantization levels. Companding quantizers can be optimal and logarithmic, 
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and within the logarithmic there are A and µ-logarithmic quantizers. In this paper, we 

assume that input signal is with Laplacian probability density function and pay attention 

on µ-logarithmic companding quantizer which provides almost constant signal to 

quantization noise ratio (SQNR) in a wide range of input variance. A quasi-logarithmic 

companding quantizer is suitable when the input signal’s variance changes with the time 

in a wide range, as it is the case with the speech signals [1].  

The emphasis in this paper is placed on finding the optimal value of compression factor by 

using two methods. A new two-step method is introduced to determine the optimal value of 

compression factor. Thus obtained optimal compression factor is compared with the result 

achieved with the Muller’s iterative method. The behavior of SQNR is also analyzed in a 

narrow range of input signal variance. The goal of this paper is formulation of a simple 

method for compression factor optimization which provides results comparable to those 

obtained using the Muller’s iterative method. Both methods start from the first derivate of 

distortion which is obtained by using the Bennett’s integral, and setting it to zero. After that 

we apply the Muller’s iterative method and new two-step method and discuss results. These 

optimization methods can be also applied to the image and video processing [4], [5]. 

The Muller’s iterative method works on the principle of approximating the function in 

the vicinity of the roots of the quadratic polynomial. For solving the obtained transcendental 

equation by using the new two-step method we notice that a substitution which reduces 

complexity of equation into a seeming quadratic equation can be introduced. We determine 

the solution of quadratic equation, replace the introduced substitution and obtain a simple 

equation for determining the optimal value of compression factor µ.  

One of the parameters for both methods is the support range of quantizer and it has to 

be correctly determined due to its influence on the SQNR [2], [3], [6], [7] and [8]. The 

region of an input signal is divided by the scalar quantization procedure into a granular 

region and an overload region, which are separated by the support region thresholds –xmax 

and xmax. These thresholds define support region for quantizer [1], [2], [3], [6] and [7]. The 

support region has great influence on the total distortion, because the granular and overload 

distortion compose total distortion. Wider support region provides smaller overload distortion, 

but larger granular distortion while narrower support region provides smaller granular but 

greater overload distortion, and because of that fact this value has to be optimal too. Equation 

for finding optimal support limit value of quasi-logarithmic quantizer is derived in paper [6] 

and that closed-form formula is used in this analysis. 

The rest of the paper is organized as follow. In Section 2 a description of companding 

quantizer for a Laplacian source is given. Also the Muller’s iterative method and the new 

two-step method are described in detail. In Section 3 numerical results are shown and 

analysis of these results is given. In Section 4 the contributions of the paper are summarized. 

2. COMPRESSION FACTOR DETERMINATION FOR QUASI-LOGARITHMIC QUANTIZER 

Quantization process represents mapping Q([xi-1,xi)→yi, i=1,...,N, where N is the 

number of quantizer levels, xi, i=0,...,N, are decision thresholds, and yi, i=1,...,N, are 

representation levels [1]. For signals with unlimited amplitude can be taken x0 → -∞ and 

xN → +∞. Segment [xi-1, xi) is noted as Δi, i=1,…,N. Segments Δ2,Δ3,…,ΔN-1 that are limited 

from both sides present granular region. The first and the last segments Δ1 and ΔN are 
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unlimited from one side and they make overload region. During the quantization process 

the irreversible error is made due rounding current values of input signal on representation 

level. This error is called quantization error. Quantization error can be expressed by the size 

called distortion which represents average value of mean-square error.  

Distortion presents the sum of two parts: granular and overload distortion. In this paper we 

use Bennett’s integral to obtain granular distortion (1) and expression (2) for overload 

distortion [1]: 
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where c’(x) presents the first derivative of compressor function used in quasi-logarithmic 

quantizer, p(x) is a Laplacian probability density function, N is the number of quantization 

levels while xN = xmax presents the support range of quantizer. 

In this paper, Laplacian probability density function is used and is defined as: 
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where σ presents standard deviation of the random variable x. µ-law compression function, on 

which  quantizer’s design is based, is defined with [1], [6], [7] and [8]: 
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where xmax is support range of quasi-logarithmic quantizer, whereas µ is compression 

factor [1]. 

By substituting (3) and (4) in (1) and introducing approximation yNxmax, we obtain 

the following variance depended expression for total distortion [2], [3]: 
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As previously mentioned, total distortion presents the sum of granular and overload 

distortion: D(Q) = Dg(Q) + Do(Q). In this paper we design companding quantizer for unit 

variance σ
2 
= 1, as well as for narrow range of input signal variances, so that the expression for 

total distortion becomes: 
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Expression (5) is very important for our work because it represents the starting point 

for both methods. In both methods it is required that the first derivate of distortion with 

respect to compression factor µ which equates to zero. 
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For determining optimal value for compression factor of the considered quasi-

logarithmic companding quantizer, we need to know optimal support region threshold and 

for this reason we use, in both methods, the closed-form formula from [6]: 
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The basis of Muller’s is approximation of function in the neighborhood of the root by 

a quadratic polynomial [9]. In fact, Muller’s method generalizes the secant method of root 

finding by using quadratic 3-point interpolation [10], [11]. It uses three points, then 

constructs parabola trough these three points and takes the intersection of this parabola 

with x-axis to be the next approximation [9].  

For the new two-step method, it is also necessary to equalize the first derivative of 

total distortion expression (5) in respect to compression factor µ with zero, and we obtain 

the following equation: 
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By observing equation (8) we concluded that a substitution can be introduced: 
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By introducing the substitution (9), transcendent equation (8) has been reduced to 

simple quadratic equation where compression factor µ is variable after which equation can be 

solved: 
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which gives two solutions: 
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but it is considered only one with physical sense, that is solution that gives positive values 

for compression factor.  

The optimal value of the compression factor is obtained for the case when the distortion has 

a minimum value which provides the highest SQNR. The second step of this method enables us 

to satisfy this condition. For that purpose we apply two closed-form equations for the first and 

second step of the method: 
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for first step of the new two-step method, and: 
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for the second step of the method. In expressions (12) and (13) it can be observed that 

support range of quasi-logarithmic quantizer is an important parameter for compression 

factor optimization. In this purpose, support range value must be calculated for every 

step, which means that we calculate support range, distortion and SQNR for starting value 

of compression factor. After that we obtain compression factor value for the first step and 

calculate all of these values for this step. The procedure is the same for second step of this 

two-step method for compression factor optimization. 

Quality of quantized signal is usually expressed through signal-to-quantization noise 

ratio which is defined as: 
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Average value of SQNR, by which we can estimate the optimal compression factor 

value in narrow range of input signal variances, is calculated using following expression: 
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where M presents the number of samples in the range of variances. 

3. NUMERICAL RESULTS AND ANALYSIS 

In this section the numerical results obtained during the process of compression factor 

optimization by using two different methods are presented. For the case when a signal with 

Laplacian probability density function of unit variance is brought on the input of companding 

quantizer, the compression factor and support limit of quantizer are calculated in two 

different ways, using Muller’s iterative method and presented two-step method. The results 

are shown in tables and compared, after which we derive certain conclusions. 

In tables the results of compression factor optimization µ are shown for two methods. 

Tables 1, 2, 3 and 4 show values for compression factor µ, distortion D and signal to 

quantization noise ratio SQNR during optimization process by using the new two-step method 

for different numbers of quantization levels N.  

At first, we need to have a starting value for compression factor and for this analysis it is 

used µ=128, corresponding to approximately half of compression factor value in ITU-T 

recommendation G.711. Due to the importance of support range value, expression (7) has 

been used to obtain support range value that is calculated in both steps of the new two-step 

method, but also in initial step for starting value of compression factor. After that, in the first 

step the compression factor value has been calculated by using (12), support region value 
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using expression (7), while the distortion D is obtained by using expression (6) and in the 

end SQNR by using (14). After that, in the second step expression (13) has been used for 

calculating µ value that presents the optimal value, expression (6) for distortion D in this 

step and expression (14) for final signal-to-quantization noise-ratio SQNR. 

Table 1 Compression factor µ, distortion D, and SQNR  

of the new two-step method for N=32 

Step µ xmax D SQNR[dB] 

µ0 128 6.872 0.00835415 20.781 

µ1 19.811 6.218 0.00477807 23.2075 

µ2 10.311 6.073 0.00436196 23.6032 

Table 2 Compression factor µ, distortion D, and SQNR  

of the new two-step method for N=64 

Step µ xmax D SQNR[dB] 

µ0 128 7.85223 0.00211105 26.755 

µ1 22.6374 7.23476 0.00130122 28.8565 

µ2 12.5906 7.09199 0.00121541 29.1528 

Table 3 Compression factor µ, distortion D, and SQNR  

of the new two-step method for N=128 

Step µ xmax D SQNR[dB] 

µ0 128 8.83234 0.000533447 32.7291 

µ1 25.4629 8.24843 0.000349829 34.5614 

µ2 14.9603 8.1095 0.00033213 34.7869 

Table 4 Compression factor µ, distortion D, and SQNR  

of the new two-step method for N=256 

Step µ xmax D SQNR[dB] 

µ0 128 9.81245 0.000134797 38.7032 

µ1 28.2885 9.25981 0.000093138 40.3087 

µ2 17.4093 9.12575 0.000089491 40.4822 

Tables 5, 6, 7 and 8 show compression factor changing during optimization process 

using the Muller’s iterative method for different values of quantization levels. For using 

Miller's method we have to set the initial values for the compression factor, and it is done 

by setting (x1, x2, x3) = (1, 255, 128), where (x1, x2) represent border values. After that we 

need to calculate parameters for the Muller’s method [9] in order to obtain the optimal 

value of compression factor during iterations. For every iteration the relative error is 

calculated and based on that we stop algorithm when error is smaller than predefined 

threshold ε, which is ε = 1%. Starting with the real numbers for border points (x1, x2) = (1, 

255), we ensure that the algorithm converges to the solution, which is thus certainly to be 

the real value. The optimization process of compression factor using Muller’s iterative 

method is performed for the same quantization level numbers as the new two-step method. 
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Table 5 Parameters for analysis of the accuracy of Muller’s iterative method for N=32 

I x1 x2 x3 x4 δ[%] 

1 1 255 128 88.0280 45.4 
2 1 128 88.0280 54.8561 60.47 
3 1 88.0280 54.8561 36.2045 51.52 
4 1 54.8561 36.2045 24.1396 49.98 
5 1 6.2045 24.1396 16.8432 43.31 
6 1 24.1396 16.8432 12.4921 34.83 
7 1 16.8432 12.4921 10.1286 23.34 
8 1 12.4921 10.1286 9.0669 11.62 
9 1 10.1286 9.0669 8.7428 3.71 

10 1 9.0669 8.7428 8.6904 0.6 

Table 6 Parameters for analysis of the accuracy of Muller’s iterative method for N=64 

I x1 x2 x3 x4 δ[%] 

1 1 255 128 88.5680 44.52 
2 1 128 88.5680 55.6518 59.14 
3 1 88.5680 55.6518 37.2201 49.52 
4 1 55.6518 37.2201 25.3594 46.77 
5 1 37.2201 25.3594 18.3005 38.57 
6 1 25.3594 18.3005 14.2467 28.45 
7 1 18.3005 14.2467 12.2252 16.53 
8 1 14.2467 12.2252 11.4630 6.64 
9 1 12.2252 11.4630 11.2913 1.52 

10 1 11.4630 11.2913 11.2726 0.16 

Table 7 Parameters for analysis of the accuracy of Muller’s iterative method for N=128 

I x1 x2 x3 x4 δ[%] 

1 1 255 128 89.1369 43.59 
2 1 128 89.1369 56.5070 57.74 
3 1 89.1369 56.5070 38.3309 47.42 
4 1 56.5070 38.3309 26.7210 43.44 
5 1 38.3309 26.7210 19.9559 33.90 
6 1 26.7210 19.9559 16.2559 22.76 
7 1 19.9559 16.2559 14.5981 11.35 
8 1 16.2559 14.5981 14.0895 3.61 
9 1 14.5981 14.0895 14.0065 0.59 

10 1 14.0895 14.0065 14.0001 0.045 

Table 8 Parameters for analysis of the accuracy of Muller’s iterative method for N=256 

I x1 x2 x3 x4 δ[%] 

1 1 255 128 89.7358 45.69 
2 1 128 89.7358 57.4240 56.27 
3 1 89.7358 57.4240 39.5407 45.22 
4 1 57.4240 39.5407 28.2291 40.07 
5 1 39.5407 28.2291 21.8116 29.42 
6 1 28.2291 21.8116 18.5076 17.85 
7 1 21.8116 18.5076 17.2046 7.57 
8 1 18.5076 17.2046 16.8868 1.88 
9 1 17.2046 16.8868 16.8491 0.22 

10 1 16.8868 16.8491 16.8469 0.01 
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After determining the optimal value of compression factor µ for quasi-logarithmic 

quantizer in the case when Laplacian source at the quantizer input has unit variance,  the 

optimal value of compression factor will be searched for in a narrow range of input signal 

variance, σ
2∈[-3dB,3dB]. In Fig. 1, for N=256, an analysis of obtaining the optimal 

compression factor µ is presented. We start from the optimal value xmax for unit variance and 

analyze which value of compression factor is optimal for constant value of xmax=9.12. The 

analysis is made for values of µ (µ=14, 18, 28, 40, 70), which are from the wide range of 

compression factor, and calculated the average value of SQNR in the order to conclude 

which value of compression factor µ is optimal for narrow range of input signal variance. 

From Fig. 1 and by calculating the average values of SQNR for each compression 

factor value, it can be seen that for the narrow range of input signal variance [-3dB, 3dB] 

the optimal value of compression factor is µ=18 for N=256, which is the closest value to 

the optimal value for unit variance µ=17.4 according to the new two-step method. In this 

range of input signal variance the average values of SQNR for µ=14, 18, 28, 40, 70 is 

SQNR= 39.7067 dB, 39.7514 dB, 39.6479 dB, 39.4270 dB, 38.9137 dB, respectively 

from which it can be observed that the average value of SQNR for µ=18 is better than the 

values of average SQNR for the rest of analyzed values of µ.  

From Fig. 1 it can be seen that in the zone of small input variance (σ
2
=-3dB) SQNR 

increases until compression factor reaches value of µ=28 and after that SQNR begins to 

decrease along with its maximum. 

 

Fig. 1 SQNR over variance range of input signal [-3dB, 3dB]  

for N=256, xmax=9.12 and different values of compression factor µ  

Further increasing of the compression factor decreases the value of SQNR, the mean 

value of SQNR and its maximum value. In order to satisfy the condition that on both sides 

of the range approximately the same SQNR have to be, we must consider the range of the 

input variance σ
2∈[-4dB, 2dB]. 
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Fig. 2 SQNR over variance range of input signal [-4dB, 2dB]  

for N=256, xmax=9.12 and different values of µ 

From Fig. 2 and by calculating the average values of SQNR for the following values of 

compression factor µ=18, 21, 28, 40, it can be seen that for the narrow range of input signal 

variance [-4dB, 2dB] and for N=256 the optimal value of compression factor is µ=21, which 

gives the highest average value of SQNR. In this range of input signal variance the average 

values of SQNR is 39.9449 dB, 39.9608 dB, 39.9081 dB, 39.7166 dB for µ=18, 21, 28, 40, 

respectively. It can be observed that the average value of SQNR for µ=21 is better than the 

values of average SQNR for the rest of analyzed values of compression factor µ. 

4. CONCLUSION 

In this paper we formulated the new two-step method for optimizing compression factor 

µ, which provides great accuracy in only two steps compared to the Muller’s iterative 

method which gives optimal compression factor value in the 9
th
 or 10

th
 iteration, depending 

of number of quantization levels. The conclusion is that the new two-step method is much 

simpler and faster than Muller’s iterative method. Since the new two-step method determines 

the optimal compression factor for unit signal variance, the second goal of the paper was to 

determine the optimal value of µ in the case when the input signal variance changes in the 

narrow range of input signal variance, [-3dB, 3dB] and [-4dB, 2dB]. Based on the average 

value of SQNR, we concluded which value of compression factor is optimal for certain 

variance range. It has been shown that for the variance range [-3dB, 3dB] compression 

factor value µ=18 while for the variance range [-4dB, 2dB] optimal is µ=21. We also 

concluded that the optimal compression factor value does not depend only on the variance 

range width, but also on the variance range boundaries, because the optimal compression 

factor value is not the same for the considered ranges of variance. 
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