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Abstract. This paper studies a low-latency decode-and-forward cooperative wireless 

network subject to composite fading. Assuming temporally correlated channel between 

cooperating nodes and maximal ratio combining at the destination, outage probability 

(OP) performance is investigated and novel OP expressions are derived when nodes apply 

a threshold-based protocol for internode communication. The effects of network 

dimension, multipath fading and shadowing severity parameters, correlation coefficients 

and average uplink and internode signal-to-noise ratios on OP are discussed.    
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1. INTRODUCTION 

Wireless communication systems continue to evolve, keeping up with the constantly 

growing user demands for better coverage, higher data rates and overall seamless user 

experience. Utilizing cooperative diversity full spatial diversity can be achieved and 

therefore overall network performance can be improved [1]. Cooperative protocols can be 

divided into two main protocols and their derivations – amplify-and-forward (AF) and 

decode-and-forward [2]. The simplest protocol is AF, where the signal received by a relay 

node is amplified, frequency translated and retransmitted. Amplification can be performed 

by either a fixed or variable gain, which require channel state information (SCI) [3,4]. In 

DF protocols, a relay node detects the signal, decodes it, re-encodes and only then retransmits 

it. These protocols require more hardware and are more complex in processing terms compared 

to AF, however, DF protocols are known to be a performance optimum w.r.t. metrics such as 
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error rates or outage probability [2]. In addition to AF and DF protocols, hybrid protocols, like 

the decode-amplify-forward recently arose in literature [5], which combines the benefits 

of both AF and DF. 

In the past decade, extensive literature on the topic of cooperative communications can 

be found [1-13]. Laneman et al. gave the mathematical framework for energy-efficient 

multiple-access cooperative strategies in [1]. These strategies, based on AF and DF relaying, 

achieve significant diversity and outage gains when compared to a non-cooperative single 

link case.  

Besides the repetition protocols, Ikki and Ahmed have investigated best-relay and 

incremental-best-relay selection schemes, respectively, in [6] and [7]. In [6], instead of 

using all nodes in the network as relays, only the “best” one is used for forwarding data, 

i.e., the relay with the highest uplink signal-to-noise ratio (SNR) to the destination. In [7], 

this relay is used only if the destination provides a negative acknowledgement via 

feedback messages. With the use of these schemes, only the source node uplink channel 

and the best relay uplink channel are needed. 

Chatzigeorgiou et al. have introduced repetition schemes over Rayleigh fading in their 

works regarding DF schemes, ensuring the destination will always receive the same amount 

of data per source node [8, 9]. In [8], in the high SNR regime, all nodes relayed data to the 

destination if the channel between nodes was reliable and decoding was possible at all 

relays. However, if the channel between nodes was poor, cooperation was dropped and 

every node re-sent its own data packets to the destination.  In [9], the same authors improved 

the repetition protocol, and only those packets which are not successfully decoded were re-

sent. These repetition protocols were further expanded in [10], where the network was 

subject to Nakagami-m fading, while in [11] the effects of unequal SNR and temporary 

node blockage were taken into account. 

Outage performance of low-latency DF cooperative networks was analyzed in [12,13], 

where a threshold-based protocol was utilized in the communication between nodes over 

Rayleigh fading. The protocol was based on monitoring the channel between nodes and sending 

data in different time periods depending on the estimated value of the instantaneous SNR.  

In this paper, the main motivation is the analysis of DF cooperative networks usually 

found in industrial plants, which have more open layout compared to traditional wireless 

networks, and consist of large machines with a presence of concrete and highly reflective 

materials such as metal. These networks typically require low and deterministic latency. 

When wireless networks are used for process control, any missing or delayed data can severely 

degrade the quality of control [14]. Furthermore, any potential equipment problems and failures 

can be avoided and replacement costs can be prevented with an early notification system [15].  

In these operating regimes, outage probability (OP) is the correct performance indicator.  

Taking into account the previously mentioned repetitive schemes, the threshold-based 

protocol and temporal correlation in the channel between nodes, closed-form analytical 

expressions for OP are derived when the network is subject to composite fading and the 

destination applies maximal ratio combining (MRC). Furthermore, the impact of multipath 

fading and shadowing severity parameters, network dimension, average SNR values and 

multipath and shadowing correlation coefficients on OP is discussed. 

The rest of the paper is organized as follows. Section 2 introduces the system model, 

the protocol used, and the composite fading channel. In Section 3, OP analysis of the 

system is presented. Numerical results are given in Section 4 and concluding remarks are 

presented in Section 5. 
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2. SYSTEM AND CHANNEL MODEL 

This paper analyzes a wireless cooperative network consisting of Ui, i = 1,…, M  

nodes and the destination, denoted by D. Nodes cooperate between each other send data 

to the destination. The channel between cooperating nodes is referred to as the internode 

channel, while the channel between a node and the destination is referred to as the uplink 

channel. Nodes are placed in a cluster, allowing the internode channel statistics to remain 

the same. The destination can detect each node individually due to transmission on 

orthogonal channels, avoiding interference. Channel orthogonality can be achieved by 

means of time, frequency or code multiple access schemes (TDMA/FDMA/CDMA). All 

channels are subject to short-term (multipath) and long-term fading (shadowing), as well 

as additive white Gaussian noise (AWGN). Fig. 1 depicts a block diagram of the wireless 

cooperative network. 

 

 

Fig. 1 Wireless cooperative network consisting of M = 5 nodes and the destination.  

The whole network is subject composite fading. 

Uplink and internode channels are both subject to multipath fading and shadowing. 

Multipath fading, modelled by the Nakagami-m distribution, has shown to be quite 

accurate in describing both line-of-sight as well as non-line-of-sight scenarios between the 

transmitting and receiving end of the communications system [16]. Fading conditions, 

controlled by the fading parameter m ≥ 0.5, account both for deep fades, as well as 

instances where a direct signal component is present. Setting the fading parameter to       

m = 1, the Nakagami-m distribution reduces to the well-known Rayleigh distribution. 

In addition to the multipath component, the received signal is also subject to shadowing. 

Empirical results showed that shadowing can be accurately described by the log-normal 

distribution [17]. Combining the Nakagami-m multipath component with log-normal 

shadowing, the unified model for composite fading will hence be Nakagami-m distributed, 

with its mean power a random process that is log-normal [17,18]. However, this model is 

inconvenient for further mathematical manipulation and does not produce a closed-form 

solution. By taking an appropriate substitution for the log-normal component with the 
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gamma distribution, a closed-form expression can be obtained. The resulting composite 

fading model is often termed in literature as the Generalized-K (KG) model [19]. 

The probability density function (PDF) and cumulative distribution function (CDF) of 

the uplink SNR  of the composite fading channel are given respectively as [17,20] 
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where m and k are the multipath fading and shadowing severity parameters, respectively, 

  is the average output SNR, (·) is the gamma function defined in [21, eq. (1.1)], K(·) 

is the modified Bessel function second kind of order , defined in [21, eq. (8.432)] and 

G(·) is the Meijer's G-function, defined in [21, eq. (9.301)]. In addition, Meijer's  

G-functions can be transformed in more familiar hypergeometric functions [21, eq. 

(9.41.1)] by applying the relation [22, eq. (07.34.26.0004.01)]. The shadowing severity 

parameter k is related to the shadowing spread SH in log-normal shadowing as [17] 
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where ' is the first derivative of the digamma function, defined in [21, eq. (8.360)].  

Node cooperation is performed in two subsequent stages, in the manner similar to that 

of [8]. During the first stage, node Ui broadcasts its packets to all the nodes in the network 

and to D. In the second stage, if all relays have successfully decoded every packet, the 

destination applies MRC. Node Ui “knows” the number of nodes that have successfully 

decoded its packets via feedback messages, which are assumed to be error-free. However, 

if any of the packets are not successfully decoded, every node drops cooperation and re-

transmits its own packets another (M – 1) times.  

Each source node monitors the internode channel and applies the threshold-based 

transmission protocol as seen in [12,13]. At the beginning of its transmission slot, node Ui 

listens to the instantaneous value of the internode SNR, denoted with i, and compares it to the 

predetermined transmission threshold 0. If the SNR value of internode channel is equal or 

greater than 0, node Ui sends its data packet immediately. If this is not the case, node Ui will 

delay its transmission, and after a waiting period, it sends the data packet regardless of the 

current internode channel state. Note that even with this delay, the transmission is still within its 

allocated slot, causing no interference with other transmissions. However, due to the varying 

fading and shadowing process, the initial SNR estimate at the beginning of the transmission in 

the first stage, denoted with i' will be correlated to the second, delayed instance i'', both in 

multipath and in shadowed component. The resulting joint PDF of these two instances can be 

written as [19] 
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where n and g are the Nakagami-m and gamma correlation coefficients, respectively,     

 = k + m + a + b,  = k + b – m – a, and (1 )(1 )
i n g i       . Packet scheduling in 

internode communication is shown in Fig. 2. 

 

Fig. 2 Packet scheduling in the internode communication. 

At the relay, a packet is successfully decoded if the internode SNR is greater than the 

decoding threshold 0. Mathematically speaking, the probability of successful decoding is 

obtained by taking a double integral over (4) as 
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Transforming the Bessel function in (4) to the Meijer's G-function from [22, eq. 

(03.04.26.0006.01)] and using [22, eq. (07.34.21.0084.01)] the closed-form solution for 

the successful decoding probability of one packet at the relay is obtained as 
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Although (6) contains an infinite sum, this sum converges quickly. Table 1 shows the 

number of summed elements in (6), denoted with N, which are required to achieve 

convergence to the 6th significant digit. 
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Table 1 Number of elements required for convergence to the 6th significant digit in (6) 

m = 1, M = 2 

SH = 3 dB 

n = 0.1 

g = 0.1 

n = 0.3 

g = 0.3 

n = 0.5 

g = 0.5 

n = 0.7 

g = 0.7 

0dBi    6 12 20 40 

5dBi   5 11 18 38 

10dBi   4 9 15 35 

15dBi   4 7 12 29 

To examine the convergence of infinite series in eq. (6), let’s denote the finite series in eq. 

(6) as 
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where a and b go from zero to N. Now, let’s define the corresponding relative error with 
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One can notice that the all the terms in the series are non-negative, and EN ≥ EN+1 ≥ 0. 

Through numerical evaluation of (6), satisfactory convergence is achieved, i.e.,           

PdecN → Pdec as N → ∞. The convergence speed is illustrated through the behavior of      

EN – EN+1 for sufficiently large N, with the assumption 1dec decN
P P


 . The relative error 

difference can therefore be expressed as [23] 
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Table 2 illustrates (9) for the parameters m = 1, SH = 3 dB and M = 2. 

Table 2 Relative error EN – EN+1 

N 

10dBi  

n = 0.1 

g = 0.1 

10dBi  

n = 0.3 

g = 0.3 

10dBi  

n = 0.6 

g = 0.6 

10dBi  

n = 0.9 

g = 0.9 

15 0 1.06×10-10 8.53×10-6 0.0044 

16 0 3.11×10-11 5.02×10-6 0.0040 

17 0 9.15×10-12 2.96×10-6 0.0036 

18 0 2.69×10-12 1.74×10-6 0.0033 

19 0 7.92×10-13 1.03×10-6 0.0030 

20 0 2.33×10-13 6.08×10-7 0.0027 
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3. OUTAGE PROBABILITY ANALYSIS 

After the second stage of cooperation, all nodes will choose to either forward the 

packet received from other nodes to the destination, or re-send their own packets instead. 

This decision is based on the feedback messages in the internode channels. Since every 

node sends a total of M data packets after the end of the two stage transmission process, 

constant frame energy is preserved. The destination combined the received packets after 

the two-stage transmission process by applying MRC.  

In [24], it has been shown that for identically distributed KG random variables, the 

output SNR of a MRC combined signal will remain KG distributed, replacing m by mM in 

the expressions for PDF and CDF everywhere except in the Meijer's G-function argument. 

In full cooperation mode, denoted with “coop”, the OP can be expressed straightforward 

from the CDF given in (2), replacing m with mM, obtaining 
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Similarly, when cooperation is dropped and nodes act selfishly, resending their own 

packets, denoted with “self”, there exists only one independent transmission path, but since a 

node sends its data packet a total of M times, those transmissions are viewed as a single 

transmission with M times the power [8,9]. The resulting expression for OP has the form 
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The network can be either in “coop” or in “self” regimes depending on the successful decoding 

of all packets. Due to mutual independence of the internode channels, the probability of 

operating on the “coop” regime is given as [8] 

   ( 1)

decPr coop
M M

P


 ,  (12) 

where Pr[·] denotes probability and Pdec is evaluated in (6). Similarly, the probability of 

being in the “self” regime is simply given as 

     ( 1)

decPr self 1 Pr coop 1
M M

P

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Weighting the OP expressions in the “coop” and “self” regimes, given in (10) and (11) 

with their respectful probabilities, the final expression for OP is obtained as 
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4. NUMERICAL RESULTS 

In this section, numerical values for outage probability are efficiently evaluated for 

any given value of average SNR over internode and uplink channels, as well as fading and 

shadowing severity and correlation coefficients, and number of nodes in the network. The 

decoding and outage threshold are set to 0 = -0.441 dB, which accounts for convolutional 

coded data packets, length of 512 bits [9]. 



44 N. ZDRAVKOVIĆ 

0 5 10 15 20 25 30

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 
n
 = 

g
 = 0.1

 
n
 = 

g
 = 0.5

 
n
 = 

g
 = 0.9


i
 = 10 dB


i
 = 5 dB

 

 

O
u
ta

g
e 

P
ro

b
ab

il
it

y

Average uplink SNR [dB]


i
 = 0 dB

M = 2

m = 1


SH

 = 3 dB


0
 = -0.441 dB

 

Fig. 3 Outage probability dependence on average uplink SNR for different values  

of average internode SNR and different correlation coefficients. 

Fig. 3 shows outage probability dependence on average uplink SNR for different 

values of average internode SNR and different correlation coefficient combinations. As 

expected, increasing the average internode SNR results in lower outage probability, 

especially for greater values of average uplink SNR. As the internode channels improve, 

in the high uplink SNR regime, correlation will have a greater impact. For instance, at 

20   dB, outage probability drops from 1.1×10
-3

 to 5×10
-4

 as n and g decrease from 

0.9 to 0.1 at 10i  dB, and only from 2.6×10
-3

 to 1.7×10
-3

 at 5i   dB. 
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Fig. 4 Outage probability dependence on average uplink SNR  

for different network dimension and different shadowing spread. 
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The impact of shadowing severity is shown in Fig. 4, observed for different number of 

nodes in the network, for the case when average internode SNR increases simultaneously 

with average uplink SNR. By increasing the number of nodes in the network, we observe 

only a power gain, which is more noticeable for milder shadowing conditions. However, 

as shadowing conditions worsen, increasing the number of nodes does not significantly 

improve outage performance. In heavy shadowing, i.e., SH = 9 dB, even by increasing the 

number of nodes from M = 2 to M = 4, OP stays below 10
-3
 at 25   dB. Conversely, in light 

shadowing conditions, at SH = 3 dB, at 25   dB the OP drops more than an order of 

magnitude by increasing the number of nodes from two to four. 

An outage floor is noticeable when plotting outage dependence on average internode 

SNR in Fig. 5. When internode channels become fully reliable and data packet decoding 

is always possible at the relays, outage probability is saturated. By further increasing the 

average internode SNR no gain is observable. The value of this floor is dependent on 

fading and shadowing conditions, as well as average uplink SNR. For instance, for 

m = 1.5 and 10  dB, an outage floor of 1.3×10
-3

 is reached at 17.5i  dB, while at 

20  dB, a floor of 4.34×10
-6

 is reached at 22.4i  dB. 
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Fig. 5 Outage probability dependence on average internode SNR  

for different average uplink SNR and fading severity. 

Finally, Fig. 6 shows outage probability dependence on multipath and shadowing 

correlation coefficients. As expected, better performance in obtained when either of the 

correlation coefficients decreases. This means that the initial and delayed internode 

transmissions are statistically more independent. However, the shadowing component of 

correlation will have less impact on outage performance than the multipath component of 

correlation, which can be observed by the slopes in the figure. Namely, OP decreases 

from more than on order of magnitude when n deceases from one to zero, which is not 

the case for the shadowing correlation component, g. 
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Fig. 6 Outage probability dependence on multipath and shadowing correlation coefficients. 

5. CONCLUSION 

In this paper, outage performance of a DF cooperative wireless network over a 

temporally correlated composite fading channel has been investigated. Based on the derived 

analytical expression, the outage probability dependence on different network and channel 

parameters, such as are fading and shadowing severity, network dimension, average SNR 

over uplink and internode channels, as well as fading correlation, has been analyzed. 

The results have shown that the diversity gain of the network is primarily affected by the 

shadowing component. Higher diversity gains have been obtained in lighter shadowing 

conditions, while increasing the number of nodes in the network resulted in only a power 

gain. As internode channel conditions improved, outage performance increased until reaching 

an irreversible outage floor, which accounted for the case when successful packet decoding is 

always possible at the relays. In this regime, the impact of multipath and shadowing correlation 

has shown to be significant, with the multipath component being the dominant one.  
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