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Abstract. New type of nearly monotonic rational function with one pair of zeros on 

imaginary axis has been proposed. By using these new functions with zeros as a parameter, it 

is possible to make tradeoff between minimum stopband attenuation and selectivity of the 

amplitude characteristic. In order to present efficiency of the proposed filter, comparison 

with allpole filter monotonic in the passband and inverse Chebyshev filter is presented. Also, 

design example for the seventh order new type lowpass filter is given. 
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1. INTRODUCTION 

Application of classical orthogonal polynomials in designing the analog lowpass 

filters is described in many practical solutions [1, 2, 3]. All-pole lowpass filters, which  

transfer functions have all zeros at the infinity, are easier for implementation than the low-

pass transfer functions with finite zeros on the imaginary axis, as for example inverse 

Chebyshev or Elliptic filters [1]. Therefore, all-pole approximations are always considered as a 

first option in filter design. 

Many approximations offer excellent magnitude characteristic at the expense of the 

group delay characteristic, as Chebyshev [1] and Legendre [4, 5] filters. From the other side, 

there are approximations optimized for maximally-flat constant group delay characteristic as 

Bessel filter [6]. As a compromise, filters with monotonic passband magnitude characteristic 

achieve exchange between magnitude and phase characteristics. The Legendre-Papuolis 

(known as an “Optimum L” or just “Optimum”) filter proposed by A. Papuolis [5] with 

critical monotonic magnitude response in the passband, has the maximum rolloff rate for a 

given filter degree. It provides a compromise between the Butterworth filter which is 
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maximally flat and Legendre [4] with ripples in the passband. Legendre-Papoulis filters 

can be useful in applications that need a steep cutoff at the passband edge but cannot 

tolerate passband ripples, or in cases when Legendre filter produces high values of the 

group delay at the passband edge. 

Recently, low pass filters having nearly monotonic pass-band magnitude response, designed 

by using the sum-of-square Legendre polynomials, have been proposed [7]. These filters have 

smaller pass-band magnitude distortion comparing to Legendre-Papoulis filters, but both filters 

have similar performance in the stop-band.  

This paper proposes a design technique for the low-pass filters based on sum-of-squares 

Legendre polynomials with one pair multiple zeros on imaginary axis in order to provide 

steeper slopes at the cutoff frequency, but without influence to the group delay response. These 

filters are nearly monotonic or monotonic in the pass-band and non-monotonic in the stopband. 

The proposed design is compared with inverse Chebyshev filters which are maximally flat in 

the passband and equiripple in the stopband. 

2. APPROXIMATION 

The magnitude response of any allpole lowpass filter can be written in the form:  
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where x is a frequency variable,   is constant which controls the maximum passband 

attenuation amax (in dB) as 110 max1.0


a . The characteristic function n(x
2
) is 

rational function normalized so that 1)1( n .  

When the voltage or current source is not ideal and the load is finite and nonzero, we 

have the situation of a doubly terminated lossless ladder network. The general form of the 

doubly resistively terminated two-port LC filter is shown in Fig. 1. 

 

Fig. 1 Doubly terminated lossless network driven by voltage source. 

In a doubly terminated network, the performance is measured by the ratio of power 

delivered to the load, PL, and maximum power that can be delivered by the source, Pmax. 

This ratio defines the transmission coefficient )(jH  as 

 
2 2

max

(jω) 1 Γ(jω)LP
H

P
   , (2) 



 New Type of Nearly Monotonic Passband Filters with Sharp Cutoff 63 

where (j) is the reflection coefficient looking toward the input of the filter network. It 

can be calculated as 
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where the reference impedance is the source resistance, RG, and Zin(j) is the input impedance 

looking toward the lossless network (Fig.1) at port 1. 

The characteristic function of the n-th degree Legendre low-pass filter with single pair 

of zeros at  j0, where 0 > 1, is: 
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where L2n() is orthogonal polynomial Kernel obtained as 
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and ( )ip  , ni ,,1  are orthonormal Legendre polynomials of the first kind (entire even 

or odd) of n -th degree 
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and Pn() is the classical orthogonal Legendre polynomial. Since Pn(1) = 1 then 
2

2 (1) ( 1) / 2nL n  .  

By using Christoffel-Darboux formula [8] equation (5) is reduced to: 

 1
2 1

1

d (ω) d (ω)
(ω) (ω) (ω)

dω dω

n n n
n n n

n

k p p
L p p

k






 
  

 
, (7) 

where kn is leading coefficient of ( )np  . 

Performing analytic continuation on (1) resulting in 
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From (8) H(s) can be writen as: 
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where D(s) represents the left half-plane roots of 
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The attenuation versus normalized frequency   of the seventh degree all-pole (m = 0) 

sum-of-squares Legendre polynomials Ln(s) and two new functions of the same degree 
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with m = 1 (0 = 1.41442) and m = 2 (0 = 2.0624), which provide minimum stopband 

attenuation amin = 50 dB, are illustrated in Figure 2. As it is shown, a pair of zeros on the 

imaginary axis, which are placed in stop-band, decrease pass-band attenuation and 

increase stop-band attenuation, but they have not effect on the group delay. 
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Fig. 2 Attenuation responses and group delay characteristic  

of the proposed  Legendre filters for n = 7. 

A comparison of the steepness of cutoff of filters considered here, can be made by 

calculating the cutoff slopes, 
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at the cutoff frequency c = 1 for equal attenuation in the passband amax [9]. (
2
) is the 

characteristic function given by (1). 
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By differentiating equation (12) with respect to   it is shown that the cutoff slope at 

the frequency 1  is given by 
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Since at 1  are 1)1( iP  and 2/)1(/d)(d 1   iiPi , then 
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Equation (14) contains two parts. The first part is the cutoff slope of polynomial sum-

of-square Legendre filter. The second part shows how the cutoff slope of the final transfer 

function increases with finite transmission zero. The cutoff slope increases if the multiplicity 

of transmission zero, m, increases, and transmission zero, 0, moves toward the passband 

edge. Note, that the stopband attenuation decreases when the transmission zero moves 

toward the passband edge. 
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Fig. 3 First derivatives of the passband attenuation of the proposed filter  

for 7n  and 0m , 1m  and 2m . 

In Figure 3 are shown the first derivatives of the passband attenuations of all transfer 

functions given in Figure 2. Negative derivatives (corresponding to decreasing parts of 

the magnitude characteristic) have very small values, smaller than 0.1. If the stop band 

attenuation decreases and the multiplicity of zero increases, then the passband magnitude 

can be critical monotonic or monotonic. Also, it can be noted that these values are stable 

for all practical filter degrees. 

3. REALIZATION 

Doubly terminated passive LC ladder filters have transfer functions with low sensitivities 

to component variations in the passband [10]. The all-pole low-pass prototypes synthesis, 

given a prescribed insertion-loss between a resistive source and a resistive load, is a classical 

procedure presented in many textbooks on network synthesis [11-13]. Modifications of these 

prototypes enable the design of other filter types. On the other side, some methods 

transform an LC ladder network directly into a digital filter [14]. In this method an LC 

ladder network is transformed directly into a digital filter by first representing the ladder 

filter branch equations in flow graph form and then using the bilinear z-transform to 

transform the ladder elements into digital filter elements. 
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The LC ladder network design technique is to make source impedance to unity, 

RG = 1, and pass-band edge to unity, c = 1, to transform specifications to the low-pass 

domain, and to determine the filter prototype. Transformations of the low-pass prototype 

to the needed domain lead to the final network. 

Since H(0) < 1, Legendre filter cannot be realized as LC ladder network with equal 

terminations. If the passband ripple   and filter degree are known and RG = 1, then for RL 

we get: 

 22 1221 LR  (15) 
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Proof Substituting 0  into equation (2), we get 
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On the other hand 
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After some algebraic manipulation it is obtained 
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From (16) and (18) to get one equation 
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with unknown RL. The result follows. 

By equating (2) and (4) we get: 
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Reflection coefficient, (s), can be derived from (s)(s)| = js = |()|
2
. Function 

(s) can be extracted from (s)(s) using following properties: (s) and (s) have 

opposite poles and opposite zeros, and the poles of )(s  lie in the left half of the s-plane, 

i.e. the denominator polynomial of (s) is a Hurwitz polynomial. For the minimum phase 

system, all zeros of (s) lie also in the left half of the s -plane. 

Equation (3) may be rearranged to yield 
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Since )(in sZ is driving point of an LC network, then it can be written as 
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where 11z , 12z  and 22z  are the open-circuit impedance parameters of the lossless network. 

Equation (21) can be written as 
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 where 1GR . The 11z  and 22z  parameters are identified as 
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These equations identify the impedance parameters z11 and z22 in terms of the even and 

odd parts of numerator and denominator of driving point impedance. The synthesis of the 

approximation function is reduced to realizing z11 (or z22) in such a way that the zeros are 

also realized. This step entails using the zero shifting technique [15]. Finally, we realize 

the impedance z11 as lossless two-port network terminated by the resistance RL. Our 

realizations are limited to cases in which the lossless two-port is a ladder.  

3.1. An example 

The seventh order rational transfer function with single pair of zeros at  j1.41442, for 

minimum stopband attenuation of 50 dB, has following form 
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Factoring the numerator and denominator of )(s  in even and odd parts and putting it 

in equation (24), we get 
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The impedance function z11 must be realized to exhibit the zeros of transfer function at 

 j1.41442. The admittance function y11 = 1/ z11 has a pole at infinity. A part of the residue 

of this pole can be removed to create zero at  j1.41442. The necessary residue is shunt 

capacitor 
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The remainder admittance 11( )y s  has a pair of zeros at 1.8680664js  
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The impedance 1111 /1 yz   has a pair of poles at  j1.41442, which can be removed by 

the partial fraction expansion 
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In the above expression for 11z  , the term 
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can be realized as parallel resonant circuits as shown in Figure 4, which is realized by 

C2 = 0.519026 and L2 = 0.963063. 

The remainder admittance of LC ladder network, 11y  , is 
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and it can be realized by continued partial fraction expansion as 
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Thus, C3 = 2.13807, L4 = 1.41002, C5 = 2.3166, L6 = 1.08697 and C7 = 0.857445. 

Finally, the equation (15) is used to determine RL = 0.761343. The final circuit is shown 

in Figure 4. 

 

Fig. 4 Ladder circuit of the proposed new type filter for 7n  and 1m . 

4. COMPARISON WITH OTHER TYPES OF MONOTONIC PASSBAND MAGNITUDE RESPONSE 

A simple MATLAB computer program is used to find locations of the transmission 

zeros for any specified value of the minimum stopband attenuation. As an example, 

suppose that a minimum stopband attenuation of 50 dB is required. The seventh order 

new filter with one pair of imaginary-axis zeros satisfying this requirement has following 

poles: 
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and one pair of zeros at z1,2 =  j1.41442. Figure 5 shows corresponding pole-zero plot. 

Pole-zero plot of the inverse Chebyshev filter for n = 7 and 50 dB stopband attenuation is 

also given for comparison. 

The inverse Chebyshev filters should be prepared to be suitable for comparison with a 

present design. We first define c, as the cutoff frequency at which the squared magnitude 

is down to 1 / (1 + 
2
). For convenience, we will set  to 1, as has been used in the presented 

design. Then at c 
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where 1/A
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2
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) is the maximum of the ripple amplitude in the stopband. 

Solving (37) for c we have 
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Second, as a criterion for comparison we have used the cutoff slope: 
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From equation (39) it can be concluded that the cutoff slope of inverse Chebyshev 

filters is close to the cutoff slope of Butterworth filters. 

The magnitude and group delay responses 

for the proposed design, for the inverse 

Chebyshev filter and for the sum of squares 

Legendre polynomials all-pole filter, are 

shown in Fig. 6. It can be concluded that the 

magnitude response of the proposed design of 

passband monotonic filters is superior both in 

the passband and in the stopband. On the other 

side, the group delay characteristic of the 

inverse Chebyshev filter is slightly better. 

Cutoff slopes for the proposed design, 

all-pole sum-of-square Legendre and inverse 

Chebyshev filter are: 64.281, 45 and 9.280, 

respectively. If m = 3 the cutoff slope is 

slightly increased to 67.036, but for m = 4 it 

decreases to the value 64.625. Thus, best 

solution is for m = 2. A disadvantage of the 

Inverse Chebyshev characteristic is that the passive realization requires more elements since  

have to be realized. A seventh degree passive ladder filter has six transmission zeros which 

have to be realized with seven LC parallel resonant circuits. 

10
-1

10
0

10
1
0

10

20

30

40

50

60

70

80

n=7, a
min

=50dB

Normalized frequency, 

S
to

p
b

a
n

d
 a

tt
e

n
u

a
ti
o

n
, 
d

B

 

 

 0

10

20

30

40

50

 0

1

2

G
ro

u
p

 d
e

la
y
, 
s

P
a

s
s
b

a
n

d
a

tt
e

n
u

a
ti
o

n
, 
d

B

m=1

Inverse Chebyshev

m=0 (all-pole)

 

Fig. 6 Comparison of the proposed passband monotonic filter with inverse  

Chebyshev filter and sum-of-squares Legendre (allpole) filter for n = 7. 
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Fig. 5 Pole zero plot of the proposed and  

Inverse Chebyshev filter for n = 7. 
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5. CONCLUSION 

New type of transfer function with monotonic response in the passband and non-

monotonic response in the stopband has been proposed. The stopband and passband 

performance of the filter can be improved by adding one simple or multiple pair of real 

frequency transmission zeros. For any prescribed minimum stopband attenuation the zero 

location can be determined. 

In comparison with nearly monotonic allpole filters, new filters offer the following 

advantages: monotonic performances in the passband, smaller passband insertion loss, 

and greater cutoff slope. 

Presented approximation is compared with all-pole transfer function and inverse Chebyshev 

filter on example for the seventh order lowpass filter. As revised by the results of comparison, 

the approximation with a double pair zeros on the imaginary axis yields, in many cases, the best 

solution in respect to the passband loss or to the cutoff characteristic. 

A numerical example, which includes element values for an unequally terminated LC 

ladder network realization of these filters, is given to illustrate this method. 
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