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Abstract. Average power and variance are widely used in adaptation techniques in 

signal coding. A speech signal is usually assumed to be zero-mean; thus an average 

signal power is equal to the signal variance. However, this assumption is valid only for 

longer signals with a large number of samples. When the signal is divided into frames 

(especially if the number of samples within the frame is small) the speech signal within 

the frame may not be zero-mean. Hence, frame-by-frame adaptation to signal mean 

might be beneficial. A switched uniform scalar quantizer with adaptation to signal 

mean and variance is proposed in this paper. The analysis is performed for different 

frame lengths and the results are compared to an adaptive uniform quantizer that uses 

adaptation only to average signal power, showing an improved performance. Signal to 

quantization noise ratio (SQNR) is used as a performance measure.  
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1. INTRODUCTION 

A speech signal is considered to be nonstationary since its parameters are changing 

with respect to time. However, its frequency content varies slowly with time, hence it can 

be assumed that the speech signal analysed over short-duration intervals (frames) is nearly 

stationary (quasi-stationary) [1]. Many techniques in signal processing exploit these local 

statistic characteristics of the signal, obtained when it is analysed frame-by-frame [2-4].  

The average signal power is commonly used statistical parameter for adaptation in 

adaptive signal quantization [5, 6]. When the signal is zero-mean, which is often assumed 

in speech [7], the average power is equal to the signal variance. However, this assumption 
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might not be valid when the signal is divided into frames (especially if the number of 

samples within the frame is small); hence the average signal power and variance will 

differ. This signal characteristic can be exploited for designing the adaptive quantizer. 

This paper proposes a frame-by frame adaptive uniform scalar quantizer with 

adaptation to signal mean and variance. The switched quantization techniques are used, 

where the dynamic range of the signal is divided into a number of subranges, with one 

quantizer designed for each subrange. A proper quantizer is chosen based on the signal 

variance for each consecutive frame. In this way high and stable SQNR may be obtained 

in a wide range of signal variances. The results are compared with the standard uniform 

scalar quantizer that uses adaptation only to average signal power. SQNR is used as a 

performance measure.  

The remaining of the paper is organized as follows. Section 2 presents statistical 

parameters used for adaptation in adaptive quantization techniques with the analysis 

performed for different frame lengths and various speech signals. In Section 3 a brief 

overview of the uniform scalar quantization is given. In Section 4 the adaptive switched 

uniform quantizer with adaptation to signal mean and variance is designed. In Section 5 

the obtained experimental results using a real speech signal are presented and discussed. 

Finally, concluding remarks are given in Section 6.  

2. STATISTICAL PARAMETERS FOR SIGNAL ADAPTATION IN ADAPTIVE QUANTIZATION 

Adaptive quantization attempts to adapt the quantizer to the varying input statistics in 

order to achieve a better performance [8-10]. Average signal power and variance are the 

most frequently used statistical parameters for adaptation, where the average signal power 

can be determined as: 
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where xi, i=1,…,N defines the discretized speech signal with N samples and µ is the signal 

mean: 
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Alternatively, one can use Route Mean Square (RMS) of the signal defined as the 

square root of the signal power: 
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and standard deviation, calculated as the squared root of the variance: 
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A speech signal with the duration of 4 seconds is represented in Fig. 1. The signal mean 

is approximately equal to zero. Comparing (1) and (2) one can note that in that case average 

signal power and variance are equal. However, if the signal is divided into short-term 

intervals called frames, than the signal mean within a frame is not equal to zero anymore, 

which is obvious in Fig. 2, where one frame with the duration of 10 ms is depicted. Hence, 

the average signal power determined on a frame deviates from the variance.  

 

Fig. 1 Speech signal represented in time domain (duration 4s) 

 

Fig. 2 One frame of the speech signal depicted in Fig. 1 with the duration of 10 ms  
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2.1. Analysis of average signal power and variance using speech signal 

The analysis is performed using the speech corpus of the International Telecommunication 

Union - Telecommunication Standardization Sector ITU-T [11]. The language of the corpus is 

English with 16 speakers in total, 8 of them being males (SP01,…,SP08), and the remaining 8 

being females (SP09,…,SP16). The speech signal is sampled at 8 kHz sampling rate and 

encoded using 16 bits per sample.  

The speech is divided into frames of frame lengths between 10 and 320 samples. 

Table 1 presents signal power and variance averaged over all speech frames ( FP ) for 

different speech signals and different frame lengths. While FP  is independent of the frame 

length, 2

F changes with the frame duration, but remains approximately equal to FP  for frame 

lengths between 80 and 320 samples.  

Furthermore, the root mean square deviation (Rmsd) of the average signal power from 

the variance over s frames is determined and presented in Table 1:  
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The smallest Rmsd is found for 320 sample frame lengths, while the highest value is 

obtained for the shortest frames (10 samples), which is expected as for longer signals the 

variance approaches the average signal power.  

Table 1 Signal power, variance and Rmsd averaged over all speech frames 

Speech 

 signal 
FP  

[x10-4] 

 
2

F    [x10-4] Rmsd    [x10-4] 

Frame length [number of samples] Frame length [number of samples] 

10 20 40 80 160 320 10 20 40 80 160 320 

SP 01 14.95 12.29 14.26 14.97 15.08 15.03 15.02 9.96 3.26 0.86 0.37 0.18 0.10 

SP 02 9.81 5.76 7.94 9.17 9.89 9.87 9.87 10.87 4.65 1.66 0.20 0.09 0.05 

SP 03 16.76 13.13 15.28 16.33 16.93 16.87 16.86 11.61 4.90 1.62 0.39 0.19 0.10 

SP 04 27.60 21.98 26.13 27.66 27.82 27.76 27.75 22.29 6.90 2.01 0.79 0.43 0.22 

SP 05 29.22 17.75 25.16 28.73 29.32 29.35 29.34 40.42 12.33 2.63 0.72 0.29 0.16 

SP 06 29.18 18.69 25.82 29.03 29.33 29.31 29.30 34.89 9.76 1.98 0.66 0.31 0.15 

SP 07 29.79 22.40 26.52 29.50 29.90 29.93 29.89 26.67 10.60 2.41 0.81 0.43 0.22 

SP 08 29.20 19.64 25.52 28.92 29.31 29.34 29.33 37.02 11.91 2.47 0.87 0.37 0.19 

SP 09 5.66 4.71 5.48 5.74 5.70 5.69 5.67 3.89 1.15 0.36 0.17 0.10 0.05 

SP 10 15.71 12.60 15.01 15.97 15.86 15.80 15.79 11.36 3.57 0.93 0.47 0.23 0.12 

SP 11 2.93 1.43 2.32 2.99 2.96 2.95 2.95 3.85 1.54 0.12 0.06 0.03 0.01 

SP 12 24.00 22.16 23.94 24.44 24.25 24.16 24.15 10.53 3.59 1.32 0.67 0.33 0.17 

SP 13 27.07 14.67 23.22 27.56 27.31 27.23 27.18 33.99 11.24 1.09 0.52 0.25 0.13 

SP 14 24.79 13.41 21.23 25.15 24.95 24.90 24.85 32.21 10.44 1.08 0.53 0.25 0.13 

SP 15 23.40 12.24 19.15 23.84 23.60 23.53 23.49 32.90 11.95 1.14 0.55 0.25 0.13 

SP 16 23.52 10.42 18.71 23.96 23.71 23.64 23.63 36.39 12.47 1.07 0.51 0.24 0.12 

Figures 3 and 4 show the normalized distribution of the average power and variance 

for frame lengths of 10 samples and 160 samples, respectively. While these distributions 

are clearly different for small frames (Fig. 3), they show almost a perfect match for longer 

speech frames (Fig. 4), again confirming the conclusions drawn from Table 1.  
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Fig. 3 Normalized distribution of average power and variance  

for frame lengths of 10 samples (speaker SP01) 

 

Fig. 4 Normalized distribution of average power and variance  

for frame lengths of 160 samples (speaker SP01) 

3. UNIFORM SCALAR QUANTIZER 

The uniform scalar quantizer Q is specified by N quantization levels {y1, y2,…, yN} 

and N+1 decision thresholds {x0, x1,…, xN}. The quantizer is defined as Q(x)=yi, where  

xi-1<x≤ xi for i=1,2,…,N, and ∞=x0< x1<…< xN =∞. The quantized signal takes value yi 

when the original signal belongs to the cell Si=( xi-1, xi] for i=1,2,…,N.  

Distortion is a measure of irreversible error introduced during the quantization process 

using N quantization levels and can be expressed as a sum of granular distortion Dg and 

overload distortion Do :  
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 og DDD  . (7) 

Each quantizer is designed for a predefined support region. The distance between the 

quantization levels is referred to as its granularity, and the introduced error is granular 

distortion: 
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For a large N the equation (8) can be approximated as:  
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where xmax represents the bounds of the quantizer‟s support range and p(x) is probability 

density function (pdf).  

Whenever the input exceeds the supported range (x > xmax or x < -xmax), the clipping 

occurs, and the error introduced by this clipping is referred to as overload distortion [12, 13]: 
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The balance between granular distortion and overload distortion has to be found by 

the proper choice of xmax, as reducing the granular distortion may increase the overload 

distortion, and vice versa. 

Speech signal is modeled by Laplacian pdf, as it was shown that for frames longer 

than 5 ms speech signal distribution tends to Laplacian distribution [14]: 
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For simplicity, we will assume that the signal is zero-mean, so we can substitute signal 

power with variance [15]. Granular and overload distortion of the uniform quantizer in 

that case become: 
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where t=0/, c=xmax/0, and 2

0  is the referent variance [16].  

Beside distortion, SQNR is often used as a measure of performance:  
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given in decibels (dB), where σ
2
 is the input signal variance and D is the total distortion, 

as given in (7).  

Fig. 5 shows SQNR in the wide range of signal variances for the uniform scalar 

quantizer for N=64, N=128 and N=256 quantization levels. The maximal value of SQNR 

is determined for 0  .  

 

Fig. 5 SQNR of the uniform scalar quantizer with N=64, N=128  

and N=256 quantization levels in the wide dynamic range  

The numerical Nelder-Mead method [17-21] was used to determine the optimal parameter 

copt for which SQNR is maximal, and thus the optimal upper bound of the quantizer‟s support 

region threshold opt
maxx . Table 2 gives an optimal parameter copt and a maximal SQNR for 

various numbers of quantization levels.  

Table 2 SQNRmax and copt for various numbers of quantization levels N 

N 64 128 256 

copt 5.30 6.15 7.02 

SQNRmax 25.36 30.23 35.21 

4. SWITCHED UNIFORM SCALAR QUANTIZER ADAPTED TO SIGNAL MEAN AND VARIANCE  

The proposed model uses the switched quantization technique, where the dynamic 

range of the signal is divided into subranges, with one quantizer designed optimally for 

each subrange. The proper quantizer is chosen based on the signal variance for each 

consecutive frame, hence the information about the selected subrange has to be sent to the 

receiver end for each frame. This increases the necessarry bit-rate compared to a single 

quantizer, and the number of required bits depends on the number of subranges. However, 

this increase is not significant, as this additional information is sent only once per frame.    

Both uniform and logarithmic quantizers can be used in the switched quantization. 

While the uniform quantizers have lower complexity, the logarithmic quantizers give a 
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better performance. Switched quantization ensures high and stable SQNR in a wide range 

of signal variances. 

Fig. 6 presents SQNR for the switched uniform scalar quantization with adaptation to 

signal variance with k=1,2 and 4 quantizers for the same number of subranges. A higher 

number of subranges obviously leads to smaller changes in SQNR. This quantizer will be 

used as a baseline for comparison to a model that uses adaptation to both signal mean and 

variance. 

 

Fig. 6 SQNR for switched uniform quantizer with adaptation to the variance, for N=256 

quantization levels and different number of quantizers (k=1, k=2, k=4). 

The motivation for the design of switched uniform scalar quantizer adapted to signal 

mean and variance comes from the results of analysis carried out in Section 2, which 

show that for shorter frames the average signal power deviates from the variance. Instead 

of using only variance for signal adaptation, which is common in adaptive quantization, 

we propose using both signal mean and variance. 

The block diagram of the proposed quantization technique is given in Fig. 7. The 

signal is first buffered into frames of length M, with samples x(j-1)M+i, i=1,...,M, where j 

denotes the j-th frame. For each frame the mean of the samples belonging to that frame is 

calculated and denoted with A. The mean is quantized using the logarithmic µ law 

quantizer with N1 quantization levels:  
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Quantized mean AQ is encoded and sent to the receiver end as the side information. In the 

next step quantized mean AQ is subtracted from each sample within the j-th frame: 

     MiAxx QiMjiMj ,...,1   ,ˆ
11   . (16) 
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The variance is determined for each ( 1)
ˆ   1,...,j M ix i M   , and based on this variance one 

of k available quantizers in the switched quantization scheme is chosen. The quantizers 

are optimally designed for k variances which are log-uniformly distributed in the dynamic 

range max min20log( / )B   : 

 kp
k

B
pp ,...,1 ,

2
)12(log20ˆlog20 min  , (17) 

where p denotes p-th subrange. For each subrange an optimal parameter copt is 

determined, to ensure the minimal distortion and maximal SQNR. The parameter copt is 

used to calculate the optimal upper bound of the quantizer‟s support range.  

The selected uniform quantizer with N quantization levels is used for quantization of 

samples of the current frame [19, 22]. Beside this, the bit-stream has to include the side 

information about the selected quantizer and the quantized and encoded sample mean (Ac).  

 

Fig. 7 Block diagram of the switched uniform scalar quantization  

with adaptation to signal mean and variance  

At the reciever end the incoming bit-stream is unpacked, the index of the selected 

quantizer is decoded and an appropriate inverse quantizer for the selected subrange is 

selected. Finaly, decoded mean is added to each decoded sample in the frame, as a reverse 

operation to the one at the transmitter end.  

Adaptation to both mean and variance demands the transfer of side information to the 

receiver end, leading to a total bit-rate: 

 
M

k
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N
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where the first term denotes bit-rate for encoding each sample in the frame, the second 

term carries the information about the quantized mean and the third term carries the 

information about the selected quantizer (subrange). Obtained bit-rates for different frame 

lengths are shown in Table 3.  

Table 3 Bit-rate R for N=256 and N1=256 [bits/sample] 

 

Frame length M 

[number of samples] 
10 20 40 80 160 320 

Number of 

quantizers  

k 

2 8.90 8.45 8.23 8.11 8.06 8.03 

4 9.00 8.50 8.25 8.13 8.06 8.03 

8 9.10 8.55 8.28 8.14 8.07 8.03 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental results are obtained using the speech corpus presented in Section 

2.1.  SQNR was used as a performance measure and the results for the proposed switched 

uniform quantizer adapted to mean and variance are compared to a standard switched 

uniform quantizer adapted only to variance. 

Four uniform quantizers with N=256 quantization levels were used in the switched 

quantization scheme, which cover the dynamic range [-20dB, 20dB]. The sample mean is 

quantized using the logarithmic quantizer with N1=256 quantization levels.  

Table 4 presents average SQNR for different frame lengths and various speech signals, 

both male (SP01,…,SP08), and female (SP09,…,SP16). Switched quantizer adapted to 

variance is denoted as „QV‟, while the proposed switched quantizer adapted to both mean 

and variance is denoted as ‟QM&V‟. One can note that the proposed quantizer outperforms the 

baseline for all speakers. The improvement is larger for shorter frames, which is expected, as 

the deviation of the signal power from the variance is more evident in that case. The 

obtained SQNR is in accordance with the theoretical results presented in Fig. 6.  

6. CONCLUSION 

This paper proposes a switched adaptive uniform scalar quantizer with adaptation to 

signal mean and variance. The analysis of the average power and the variance have shown 

that for shorter frames the average power significantly deviates from the variance, as the 

signal is not zero-mean. This provides motivation for using the signal mean for 

adaptation, in addition to the variance. In this way, a better performance is obtained, at 

the cost of slightly increased bit-rate, as the additional information about the signal mean 

has to be transmitted to the receiver end. 

The proposed model is especially convenient for quantization of signals sampled at 

high sampling frequencies, such as high quality speech, audio and music signals.  
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Table 4 Average SQNR for different frame lengths using the switched quantizer adapted 

to variance (QV), and the switched quantizer adapted to mean and variance (QM&V) 

Speech signal 
Type of 

adaptation 

Frame length [number of samples] 

10 20 40 80 160 320 

SP 01 
QV 32.10 32.01 32.04 32.27 32.00 31.94 

QM&V 33.66 33.08 33.08 33.44 33.18 33.10 

SP 02 
QV 32.51 32.11 32.04 31.86 31.62 31.52 

QM&V 35.24 33.92 33.61 33.21 32.91 33.01 

SP 03 
QV 32.47 32.18 32.43 32.39 32.20 31.70 

QM&V 34.00 33.12 33.22 33.24 33.09 32.60 

SP03 
QV 32.92 32.92 32.98 33.06 33.04 32.60 

QM&V 34.13 33.56 33.58 33.66 33.46 33.24 

SP04 
QV 32.66 32.40 32.30 32.41 32.46 32.35 

QM&V 35.17 33.36 32.75 32.81 32.94 32.86 

SP05 
QV 32.73 32.50 32.51 32.35 32.35 32.32 

QM&V 34.78 33.33 32.89 32.76 32.84 32.85 

SP06 
QV 33.00 32.87 32.89 32.71 32.62 32.78 

QM&V 34.45 33.83 33.43 33.16 33.13 33.25 

SP07 
QV 32.83 32.82 32.90 32.82 32.77 32.57 

QM&V 34.88 33.89 33.25 33.31 33.23 33.07 

SP08 
QV 30.87 30.45 30.29 30.20 30.16 30.57 

QM&V 33.28 32.60 32.34 32.25 32.47 32.62 

SP09 
QV 32.35 32.16 32.33 32.23 32.24 32.25 

QM&V 33.86 33.26 33.27 33.26 33.29 33.28 

SP10 
QV 29.30 28.99 28.93 29.00 29.05 29.22 

QM&V 34.11 32.85 32.03 32.30 32.32 32.62 

SP11 
QV 32.87 32.76 32.64 32.60 32.79 32.31 

QM&V 33.54 33.20 33.06 33.21 33.41 32.97 

SP12 
QV 32.22 32.26 33.04 32.94 33.11 32.86 

QM&V 35.67 33.52 33.21 33.31 33.68 33.42 

SP13 
QV 32.34 32.34 32.51 32.41 32.38 32.47 

QM&V 35.57 33.29 32.81 32.77 32.76 33.17 

SP14 
QV 32.39 32.68 32.40 32.42 32.38 32.65 

QM&V 35.86 33.94 32.87 32.87 33.02 33.33 

SP15 
QV 32.44 32.45 32.65 32.64 32.77 32.47 

QM&V 36.59 33.95 33.03 33.30 33.38 33.24 

SP16 
QV 32.10 32.01 32.04 32.27 32.00 31.94 

QM&V 33.66 33.08 33.08 33.44 33.18 33.10 
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