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Abstract. A comprehensive analysis of realization of digital filters with complex 

coefficients obtained by decomposition of real digital filters, using complex and real 

allpass networks, is given in the paper. Realization of complex coefficient filters obtained 

directly in the z domain is also discussed in the paper. An analysis of hardware costs for 

different structures used for realization of complex coefficient filters is presented. 
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1. INTRODUCTION 

Digital filters with complex coefficients have been very attractive last several years 

because of many advantages for processing of digital signals. Transfer functions of these 

filters are complex functions and input signals must be separated to real and imaginary 

parts, in order to be represented as complex signals. Complex filtering is very popular in 

telecommunications where complex representation of signals allows simple realization 

and interpretation of complex tasks such as sampling, quantization or modulation.  

The theory of complex filters has been well known for a long time, but in the last two 

decades the work on realization of these filters is much more actualized [5,9,10,11,12]. 

Today, complex filters are an important part of modern telecommunications. Speech 

processing and adaptive filtering cannot be imagined without using the digital filters with 

complex coefficients.  

There are several different structures for realization of complex digital filters. The 

problem is very topical because there is a need to use a smaller number of components in 

order to realize a digital filter. The main objective of this paper is to investigate the 

realization of complex filters using the allpass complex sections. In this paper we also 

investigated the hardware cost for realization of complex digital filters based on 
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decomposition of a filter with real coefficients of order 2N on a filter with complex 

coefficients of order N. We discussed the direct realization, canonic realization, cascade 

and parallel realization of a digital filter with complex coefficients. Comparing different 

structures we calculated the number of necessary components for every realization. 

Structures for realization of filters with real coefficients are very well known in 

existing literature [1,2,3,4]. The numbers of required components for different structures 

for realization of these filters are displayed in Table 1. It is obvious that for all structures 

the number of required components is the same excluding the direct realization. 

Table 1 Hardware cost for realization of filters with real coefficients of order N. 

Structure Delay lines Multiplicators Adders 

Direct realization 2N 2N+1 2N 

Canonic realization N 2N+1 2N 

Cascade realization N 2N+1 2N 

Parallel realization N 2N+1 2N 

 

Some types of filters (for example Butterworth, Chebyshev, Elliptic …) with real 

coefficients can be realized using the allpass networks [5]. In the case when the order of 

filter with real coefficients N is odd this filter can be realized using two real allpass 

sections where their order differs for one (the allpass filter orders will be (N-1)/2 and 

(N+1)/2) [13,14,15,16]. 

If the order of filter with real coefficients N is even this filter can be realized with two 

allpass sections with complex coefficients of the same order N/2. At the first moment, taking 

into account that realization of a complex multiplier requires four real multipliers, one can 

conclude that realization using complex sections is more complex. However coefficients of two 

complex sections are conjugate-complex to each other and for this reason it is enough to realize 

only one complex section of order N/2. The real part of the output signal and imaginary part of 

the output signal corresponds to mutually complementary filters outputs. 

2. COMPLEX SIGNALS 

Complex signal processing allows simple interpretation of complicated processing tasks, 

such as modulation, sampling and quantization. Digital filters with complex coefficients 

have real and imaginary inputs and outputs and signals they process have to be separated 

into real and imaginary parts in order to be represented as complex signals. Digital complex 

filters have many areas of application. The most interesting implementation of digital 

complex filters is realization of SSB (Single Side band) transmitters and receivers. Complex 

filtering is also preferred when DFT is carried out, as it is linear combination of complex 

components. 

The complex signal known as an analytic signal consists of an input signal x[n] as his 

real part while the imaginary part of the analytic signal is obtained by the Hilbert 

transformer applied on the input signal x[n], as given in Figure 1. Frequency components 

of real and imaginary parts of the analytic signal have π/2 phase difference at all 

frequencies. As a consequence, the analytic signal has nonzero spectral components only 
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at positive frequencies. Such signal is convenient for modulation giving an SSB output 

signal. In a given frequency band the number of communication channels is doubled due 

to the narrower spectrum of the analytic signal. 

 

 
 

Fig. 1 Realization of analytic signal. 

3. REALISATION USING ALLPASS SECTIONS 

Besides the standard structures for filter realization (direct, cascade and parallel), with the 

advent of the filter banks, parallel connections of the allpass filters become a very attractive 

solution taking into account the fact that with the realization of one filter it is possible to realize 

a complementary filter using only one additional adder. This configuration demonstrates the 

true benefits in the cases where it is necessary to implement two complementary filters. 

Therefore, it is common in the existing literature when displaying hardware costs to count the 

necessary number of multipliers, adders and delay line per one transfer function (i.e., the total 

number of components is divided by two). In the case when filters are implemented by the 

standard approach it is necessary to completely independently implement both filters (for 

example lowpass and highpass filters). If one insists on the linear phase it is necessary to add in 

the cascade appropriate phase correctors. The hardware cost for realization of linear phase filter 

using the allpass networks is lower comparing with the standard realization with phase 

correctors [13]. 

The structure shown in the Fig. 2 is characterized by a straightforward connection 

between the amplitude and phase characteristics of all the allpass filters from parallel 

branches.  

 

 
Fig. 2 Parallel connection of two allpass filters. 
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Transfer functions H(z) and G(z), amplitude characteristics |H(e 
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Based on the above expressions we can conclude that these filters do not need phase 

correctors, because it is obvious that the design boils down to the problem of phase 

approximation while simultaneously satisfies the conditions set by the amplitude of the 

resulting filter. Another advantage of the structure refers to the case of designing a filter 

with an approximately linear phase in which case one of the allpass filters, becomes a 

pure delay line, i.e. it does not contain adders and multipliers, in other words it is 

necessary to design only one IIR allpass filter whose phase will approximate an ideal 

piecewise linear phase in all the passbands and stopbands. Taking into account the fact 

that the delay line phase is ideal linear, overall phase approximation error is due to the 

allpass filter design. Hence, an equripple approximation of the allpass filter phase will 

give elliptic magnitude characteristics. 

Phase characteristics of allpass filters are displayed in Fig. 3. According to equation 

(1) passbands of the selective filter H(z) will be realized at frequencies where phase 

difference is approximately equal to zero while stopbands would be located at frequencies 

where phase difference is approximately equal to π rad. At Fig. 3. functions 2() denotes 

linear phase of delay line and 1()  corresponds to the IIR allpass phase.  It is clear that 

cutoff frequency will be located at g where phase of the allpass filter has π rad phase 

jump. 

With regard to the expression (1), we see that the next formula is valid 

2 2

( ) ( ) 1j jH e G e    (2) 

and characteristics of the filter in the passband are directly related to the characteristics of 

the complementary filter in the stopband. This connection is displayed in Fig. 4.  If one 

takes a logarithmic scale on the x axis, this relationship is linear which allows us to easily 

come up with a formula that describes this relationship and it is given by the equation 

min
max 10 HPkA c

LPA


 , (4) 

where constants are k=-0.10003362 and c=0.640352064. Maximal attenuation in the 

passband is marked with AmaxLP and minimal attenuation in the stopband is marked with 

AminHP. 
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Fig. 3 Illustration of allpass filters phase characteristics. 

 

Considering the equation (1) it is easy to understand why the problem of designing 

prescribed magnitude characteristics is reduced to the allpass phase approximation 

problem. From Fig. 4. one can observe that if a stopband attenuation higher than 30 dB is 

achieved, the complementary filter has a very small passband attenuation. That is the 

reason to use as input parameters only the stopband attenuations of complementary filters. 

Such an approach will provide solution with maximal passband attenuation far below 

1dB.   

 
Fig. 4 Dependency between the minimal attenuation of the highpass filter in the stopband 

AminHP  and maximal attenuation of the lowpass filter in the passband AmaxLP. 
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In order to illustrate the importance of equation (4) we realized a Chebyshev lowpass 

filter of eighth order. We made also decomposition of this filter on two complex allpass 

sections of order four. The coefficients of the eighth order Chebyshev digital lowpass 

filter with cutoff frequency 0.45π with maximal attenuation in the passband Amax=3dB are 

displayed in Table 2 together with the coefficients of the transfer functions of the 

corresponding complex allpass filters of the fourth order. 

Table 2 The coefficients of the Chebyshev filter and complex allpass filters obtained by 

decomposition (coefficients of polynomial numerator bi and denumerator ai, 

Chebyshev filter of eighth order, cutoff frequency p = 0.4  and coefficients at 

numerator of the complex allpass filter H1(z) are (a1i) and complex allpass filter 

H2(z) are (a2i). 

i bi ai a1i a2i 

1 0.0001745 1 0.5622295 

-j0.4184267 

0.5622295 

+j0.4184267 

2 0.0013963 -4.4082892 -1.7392394 

+j0.8796079 

-1.7392394 

-j0.8796079 

3 0.0048871 10.3501526 2.6317070 

-j0.9207915 

2.6317070 

+j0.9207915 

4 0.0097742 -15.9600831 -2.2041447 

+j0.4780012 

-2.2041447 

-j0.4780012 

5 0.0122177 17.4061751 1 1 

6 0.0097742 -13.6526950   

7 0.0048871 7.5284778   

8 0.0013963 -2.6918063   

9 0.0001745 0.4911829   

We can conclude that one of the poles, from the complex conjugate pairs of the 

starting filter function, belonging to one or the other all pass network. Here is easy to see 

why the basic building block for the realization is a complex section of the first order. It is 

clear that a selected filter has a relatively high attenuation in the passband, which 

corresponds to a higher phase error and from this reason complementary filter will be 

practically unusable. 

Pole positions of the Chebyshev filter and pole positions of both complex allpass 

sections are displayed in Fig. 5 together with attenuation of the lowpass filter and his 

complementary highpass filter. It is obviously from Fig. 5 that the complementary highpass 

filter is unusable because the minimal attenuation in the stopband of the complementary 

highpass filter is less than 5dB. It is a consequence of a bad choice of the maximal passband 

attenuation of the lowpass filter. In order to get a complementary highpass filter with 

minimal attenuation in the stopband more than 40dB, using Fig. 4, it can be seen that the 

correct choice for maximal attenuation in the passband of the lowpass filter is about 

0.0004dB. Using this value for maximal attenuation in the passband of the lowpass filter will 

yield a complementary highpass filter with satisfied characteristics. 
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Fig. 5 Pole positions of Chebyshev filter and both all pass sections and attenuation 

characteristics of Chebyshev and its complementary filter. 

4. STRUCTURES FOR REALIZATION OF COMPLEX FILTERS 

A Filter with complex coefficients can be obtained besides even order real coefficients 

transfer function decomposition also using design directly in the z domain. For realization 

of these filters it is possible to use standard structures for realization which will be 

discussed in this chapter.  

4.1. Direct realization of digital filters with complex coefficients 

Transfer function of the filter with complex coefficients realized in direct form is 

given with 
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This expression can be rewritten in the more convenient form 
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Using the inverse Z transform we can calculate real and imaginary parts of the output of a 

digital filter as 
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The direct realization of the filter with complex coefficients is displayed in Fig. 6. 

From this figure we can count a required number of components for this structure. The 

number of required multipliers is 6M+2, of required adders is 6M and of delay lines is 

3M. These numbers of components are necessary for realization of two complementary 

transfer functions. It means that for a direct realization of a filter of order N/2 we need 

3N/2+1 multipliers, 3N/2 adders and 3N/4 delay lines. 

 

Fig. 6 Direct realization of digital filter with complex coefficients 

4.2. Canonic realization of digital filters with complex coefficients 

In order to get a canonic structure for realization transfer function of digital filter (5) 

must be expressed as a product of two complex functions: 

1 2

( ) ( )
( ) ( ) ( )  

( ) ( )

W z Y z
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where ( ) r iW z W jW  . 

Real and imaginary parts of the output can be obtained using the following expressions 
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where wr (n) and wi(n) are given with 

1 1( ) 1 1 ...  ( ) ( ) ( ) ( ) ( )r r r i i Mr r Mi iw x n a w n a w n a w n M a w n Mn            (12) 

and       
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From these expressions it is possible to calculate necessary hardware for realization of 

this structure. The number of required multipliers is 4M+4, adders 4M+2 and delay lines 

2M, but because of the canonic structure the number of required delay lines is minimal. 

Hence, total number of components for direct canonic realization is 8M+4 multipliers, 

8M+1 adders and 2M delay lines. The required number of components for filter of order 

N/2 is 2N+2 multipliers, 2N+1 adders and N delay lines. The direct canonic structure for 

realization of a digital filter with complex coefficients is displayed in Fig 7. 

4.3. Cascade realization of filter with complex coefficients 

Cascade realization is based on the breaking of the transfer function on the product of 

complex factors by the next manner 

1
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where C is a complex constant and Hck are complex sections of the first order, as opposed 

from realization of the real transfer functions where the second order sections exist. The 

complex section of the first order for cascade realization is given with 
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where ( ) / ( ) W z X z  is defined as 

1
1 1

( ) 1

( ) 1 ( )r i

W z

X z a ja z


 
 (16) 

and 

 
1

1 1

( )
1 ( )

( )
r i

Y z
b jb z

W z

    (17) 

Applying an inverse Z transformation after algebraic calculations real and imaginary 

output can be obtained as 

 1 1( ) ( ) ( ) ( 1)1r r r r i in ny w b w n b w n      

 1 1( ) ( ) ( ) ( 1)1i i r i i rn ny w b w n b w n      (18) 

where ( )rw n  and ( )iw n  are given with 
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 1 1( ) (( ) (  ) 1)1r r r r i iw x n a w n a w nn       

 1 1( ) (( ) (  ) 1)1i i r r i rw x n a w n a w nn        (19) 

Using these expressions it is possible to calculate the number of components for 

realization of the complex section of the first order. The number of required multipliers is 

8, adders 8 and delay lines 2. Complex section of the first order with a complex input is 

displayed in Fig. 8. Hence, the total number of components for cascade realization in this 

case is 8M+2 multipliers, 8M adders and 2M delay lines. The required number of 

components for the filter of order N/2 is 2N+1 multipliers, 2N adders and N/2 delay lines. 

For the case where the complex multiplier C is the first component in the cascade 

structure all first order allpass sections have a complex input as displayed in Fig. 8.   

 If complex multiplier C is not the first component in the cascade structure the first 

allpass section will have real input. In this case the structure for the first allpass section is 

displayed in Fig. 9. 

It is recommended to put multiplier C to be the first component in the cascade 

structure because in this case it requires a smaller number of components for realization 

comparing with the case when the first component in cascade is section of the first order 

with the real input. Section of the first order with the real input requires an adder less, but 

also two multipliers more due to the complex multiplier which is realized with two real 

multipliers.  

 

Fig. 7 Direct canonic realization of digital filter with complex coefficients. 
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Fig. 8 Complex section of the first order for cascade realization 

 

Fig. 9 The first allpass section for the case when multiplier C  

is not the first component in the cascade structure 
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4.4. Parallel realization of filter with complex coefficients 

A parallel realization is obtained by development of the transfer function into partial 

fractions: 

1
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   (20) 

Complex section of the first order for parallel realization is given with 
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where ( ) ( ) ( ), ( ) ( ) ( )r i r iW z W z jW z Y z Y z jY z    and real input is ( ) ( )rX z X z . 

Applying an inverse Z transformation on ( ) / ( )W z X z  we get 

0 0( ) ( ) ( )r r r i iy n b w n b w n   (22) 

 

0 0( ) ( ) ( )i r i i ry n b w n b w n   (23) 

where ( )rw n  and ( )iw n  are given with 

1 1(( ) ( )  )1 1( )r r r i iw n x n a w n a w n      

1 1( ) ( 1) ( 1)i r i i rw n a w n a w n      (24) 

From equations for w(n) and y(n) the required hardware for realization of complex section 

of the first order for parallel structure can be obtained. The number of required multipliers 

is 8, adders 5 and delay lines 2. Block schema of the complex function of the first order 

for parallel structure is displayed in Figure 10. 

 

Fig. 10 Section of the first order for parallel realization of filter with complex coefficients. 
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The total number of components for parallel realization of the digital filter with 

complex coefficients is multipliers 8M+1, adders 7M and delay lines 2M. For a filter of 

order N/2 total number of components is multipliers (4N+1)/2, adders 7N/4 and delay 

lines N/2.  

The Table 3 shows the number of components necessary for realizing the transfer 

function using different structures. 

Table 3 Hardware cost for filters with complex coefficients of order N/2. 

Structure Delay lines Multiplicators Adders 

Direct realization 3N/4 3N/2+1 3N/2 

Canonic realization N/2 2N+2 2N+1 

Cascade realization N/2 2N+1 2N 

Parallel realization N/2 (4N+1)/2 7N/4 

Comparing the number of delay lines for realization of one transfer function displayed 

in Table 1 and Table 3 we can conclude that for complex coefficients filter solution the 

necessary number of delay lines is lower. All structures described in this section 

correspond to arbitrary complex filters designed directly in the z domain.  It is important 

to emphasize that the complex filters obtained by the allpass decomposition of even order 

real coefficients transfer function is a special case. Complex allpass filters possess 

coefficients in numerator and denominator which are conjugate complex to each other. In 

other words, instead of four, there are only two real coefficients. In that special case 

described configurations become even simpler and less hardware hungry. For example, 

the first order complex section in cascade structure requires 8 multipliers, but the complex 

allpass section needs only 4 multipliers. 

5. CONCLUSION 

Different structures for realization of digital filters with complex coefficients are 

investigated in this paper. Advantages for realization using the complex allpass sections 

are listed. In order to realize the complementary filters we presented connections between 

the maximal attenuation in the passband of lowpass filters and minimal attenuation in the 

passband of highpass filters. This connection must be satisfied in order to get usable 

complementary filters. 

Classical structures for realization of complex coefficient filters obtained in the z 

domain are also presented. Calculation of hardware costs for all structures has been done. 

Analyzing hardware cost it is shown that the allpass filter realization requires fewer 

components. 
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