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Abstract. The modified Pyragas method for the multiple spatial limit sets and chaos 

control in MIMO cascade nonlinear systems is presented in this paper. Also, an 

oscillatory and chaotic dynamic analysis of a specific MIMO3 cascade nonlinear 

system is performed before and after the application of control. Bifurcation diagrams 

and spatial phase portraits of uncontrolled and controlled MIMO3 systems are used for 

the purposes of analysis. 
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1. INTRODUCTION 

The Pyragas method, also known as the time-delayed feedback control method 

(TDFC), is applied to stabilize the unstable periodic orbits, [1,2]. In Figure 1 the block 

diagram of the Pyragas method is shown. In this diagram y(t) represents the output 

variable,  is a time delay, K is a negative feedback gain, p0 is a value at which the 

dynamical system has an unstable periodic orbit with a period  and p0  K(y(t)  u(t  )) 
represents a new controlled input to system, [1].  

In paper [3] a modified Pyragas method of spatial limit sets and chaos control in 

MIMO (multiple input – multiple output) cascade nonlinear systems was first introduced. 

In these systems the appearance of spatial limit sets and chaos is a consequence of signal 

propagation through space, i.e., through subsystems of MIMO cascade nonlinear systems. 

Also, in [3] the analogy between time delay of the original Pyragas method, [1], and 
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spatial delay of the modified Pyragas method is made. Applying the modified Pyragas 

method, the dynamics of MIMO systems moves from the spatial limit set and chaos 

region to the spatial stability region. Firstly, based on spatial phase portraits diagrams, 

parameter values of uncontrolled MIMO cascade nonlinear systems for which spatial 

limit sets and chaos appear are obtained. After that, using selected values of the control 

parameter in the modified Pyragas method, the spatial limit sets and chaos are controlled. 

For MIMO cascade nonlinear systems with n inputs and n outputs, the spatial phase 

portraits of limit sets and chaos are shown in the phase space (x1, x2,...,xn), where 
ni ,1, ix  is the vector of all ith cascades outputs. Because of that in the same figure 

(spatial phase portrait), for the constant value of the variable parameter ln, dynamics of all 

cascades (subsystems) is shown. 

 

Fig. 1 Block diagram of the Pyragas control method 

The modified Pyragas method for multiple spatial limit sets and chaos control is used 

in this paper. Multiple spatial limit sets consist of sets of mutually separated points in the 

phase plane. These points are situated in such a way so as to form approximately closed 

curves. In this paper, for the first time, bifurcation diagrams are used, [4-10], in the 

analysis of the applied modified Pyragas method of control. In the case of the MIMO 

system with a large number of cascades, monitoring dynamics of the whole system, using 

the bifurcation diagram, is based on monitoring of all outputs of the last cascade as a 

function of variable system parameter. 

This paper is organized as follows. In Section 2, MIMO cascade nonlinear systems 

and the modified Pyragas method for multiple spatial limit sets and chaos control are 

presented. The simulation of bifurcation diagram and spatial phase portraits of 

uncontrolled MIMO3 cascade nonlinear system with 3 inputs and 3 outputs is given in 

Section 3. In the next Section, simulation results are presented after using the modified 

Pyragas method for multiple spatial limit sets and chaos control. The concluding remarks 

are presented in Section 5 and Matlab M-files for deriving bifurcation diagrams are given 

in Appendix. 

2. MIMO CASCADE NONLINEAR SYSTEM AND MODIFIED PYRAGAS METHOD 

The MIMO cascade nonlinear system with n inputs and n outputs consists of a large 

number of nonlinear subsystems. These subsystems are of the same structure, Fig. 2, and 

each cascade is defined by the following set of equations: 
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where kinjll i
jj ,0,,1),( )(  x  are nonlinear functions whose argument is the 

input vector of each cascade 
( ) ( ) ( )

1[ , , ] ( 0, )i i i

nx x i k x . This cascade system has in total 

k + 1 cascades. Each cascade has n inputs and n outputs. The number (i + 1) in brackets is 

the ordinal of the cascade. The set of functions 
( 1) ( ) ( )

1( , , ), 1, , 0,i i i

m nf x x m n i k    is 

the same for each cascade. Functions 
( 1) ( ) ( )

1( , , ), 1, 1, 0,i i i

m nf x x m n i k     are linear, only 

the function 
( 1) ( ) ( )

1( , , ), 0,i i i

n nf x x i k   is nonlinear. The input vector of the first cascade 

of the MIMO cascade system, Fig. 2, is   ],,[ )0()0(

1

0

nxx x . 
 

 

Fig. 2 The block scheme of MIMO cascade nonlinear system with n inputs and n outputs 

For easier determination of existence or absence of limit sets in a MIMO cascade 

nonlinear system the approximation method is shown in 3, 11. Using this method the 

mutual position of the trajectory l in parametric space is determined: 
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and the stability region Sn obtained using a linearized model of the system given by 

equations (1). It is possible to form multiple limit sets, if the curve l intersects the region 

Sn many times. Motion becomes more chaotic, the more the parametric curve l 

approaches the peripheral part of the stability region. For the region Sn the following 

relations hold, [3]: 
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 a) Sn  Pn 

  b) On  Sn (3) 

where the region 
nP  (hyper parallelepiped) is given with: 

  ni
i

n
lP in  ,1 , 








  (4) 

and the region 
nO  (simplex) is: 

 121  nn lllO   (5) 

Based on conditions (3), it can be concluded that the region Sn is inside of the hyper 

parallelepiped Pn and that the region On is inside of the region Sn. The necessary 

conditions for the existence of multiple spatial limit sets mean that the curve l, (3), must 

intersect many times both regions Pn and On. 

The modified Pyragas method for spatial limit sets and chaos control is applied to a 

MIMO system with n inputs and n outputs and it is shown on Figure 3. Mathematical 

models of each controlled cascade are described with the following relations: 
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where kinjll i

jj ,0,,1),( )(  y  are nonlinear functions whose argument is the 

input vector of each cascade ( ) ( ) ( )

1[ , , ], 0,i i i

ny y i k y . 

Inputs to the first cascade of the controlled MIMO cascade system (6) y
(0)

 = 
(0) (0)

1[ , , ]ny y  and inputs to the first cascade of the uncontrolled MIMO cascade system 

(1), 
  ],,[ )0()0(

1

0

nxx x , are the same, i.e., (0) (0)y x . 

In this case the difference )()(  tyty  from the Pyragas method, [1], is replaced with the 

difference of signals 
)(

1

)()1()( i

n

i

n

i

n

i

n yyyy 

  , [3]. Thus, control of the (i + 1)th cascade is 

proportional to the difference of the nth and (n  1)th input signals of the same cascade, 
( ) ( ) ( )

1( ), 0,i i i

n nu K y y i k   . K is the control parameter. 
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The analysis of the region where multiple spatial limit sets and chaos appear can be 

performed easilly using bifurcation diagrams. In the next sections this will be shown on 

the examples of uncontrolled and controlled MIMO3 systems. 

 

Fig. 3 Modified Pyragas method for control in MIMO cascade nonlinear systems  

with n inputs - n outputs 

3. EXAMPLE OF UNCONTROLLED MIMO3 CASCADE NONLINEAR SYSTEM 

The uncontrolled MIMO3 cascade nonlinear system with three inputs, three outputs 

and k + 1 = 5000 cascade connected subsystems is given in Figure 4. Each cascade is 

described with the next set of equations: 
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The inputs to the first cascade are x1

(0)

 = 0, x2

(0)

 = 0, x3

(0)

 = 0.17 and l3 is a variable 

parameter. Determination of the region where multiple spatial limit sets and chaos appear 

can be performed easily using bifurcation diagram. Firstly, based on equation (4), the 

values interval of the parameter l3 is simply determined in the following way: 

  1i.e.,
3

3
33 




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


 ll  (8) 

Then using spatial phase portraits, a subinterval of the interval |l3|  1 is determined for 

which the analyzed system, equation (7), is not unstable. In this way the precise narrow 

interval of the parameter l3  [0.4284,0.6256]  is obtained. For this interval simulation 

of bifurcation diagram, Fig. 5, is performed using the Matlab M-file given in the 

Appendix. On the bifurcation diagram all three outputs of the last cascade x
(5000)

 = 

[x1

(5000)

, x2

(5000)

, ..., x3

(5000)

] are shown together as a function of variable parameter l3. 
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Fig. 4 Uncontrolled MIMO3 cascade nonlinear system 

For l3  [0.4284, 0.4], Fig. 5, the system is in the region of spatial chaos which is 

shown in the spatial phase portrait, Fig. 6a, l3 = 0.405. For l3  (0.4, 0.25] one spatial 

limit set is formed. This is shown in the spatial phase portrait, Fig. 6b, for l3 = 0.3. One 

branch in bifurcation diagram for l3  [0.239, 0.07]  corresponds to one stable focus, 

Fig. 6c, l3 = 0.2. Two branches in the bifurcation diagram for l3  (0.07, 0.18] 

correspond to two stable focuses, Fig. 6d, l3 = 0.1. For l3  (0.18, 0.615)  there exist two 

spatial limit sets, Fig. 6e, l3 = 0.3. For l3  [0.615, 0.625] spatial chaos appears, Fig. 6f, 

l3 = 0.62 and for l3 > 0.625 the system is unstable. 

 
Fig. 5 Bifurcation diagram of uncontrolled MIMO3 system, (7) 
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Fig. 6 Spatial phase portraits of uncontrolled MIMO3 system, (7) 

4. EXAMPLE OF CONTROLLED MIMO3 CASCADE NONLINEAR SYSTEM 

In this Section, the modified Pyragas method of control is applied to the system (7). A 

controlled MIMO3 cascade nonlinear system is given in Figure 7. Each cascade of this 

MIMO3 controlled system is given by: 
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Inputs to the first cascade of the controlled MIMO3 cascade system (9), y
(0)

 = 

[y1

(0)

, y2

(0)

, y3

(0)

], and inputs to the first cascade of the uncontrolled MIMO3 cascade system 

(7), x
(0)

 = [x1

(0)

, x2

(0)

, x3

(0)

], are the same, i.e., y1

(0)

 = 0, y2

(0)

 = 0, y3

(0)

 = 0.17. In equations (9) K is 

the control parameter and 
3l  is the variable parameter. 

 

 

Fig. 7 Controlled MIMO3 cascade nonlinear system 

For K = 0.1 a simulation of a bifurcation diagram is performed, Fig. 8. This diagram is 

obtained using the Matlab M-file given in the Appendix. On the bifurcation diagram all 

three outputs of the last cascade 
(5000) (5000) (5000)(5000)
1 2 3[ , , ]y y yy are shown together as a 

function of the variable parameter l3. It can be seen that the interval of the variable 

parameter l3 is changed in comparison with the same interval for the uncontrolled 

MIMO3 system (7). Namely, it is extended on the right side, i.e., 3 [ 0.428, 0.91]l   . 

Comparing the bifurcation diagrams given in Figs. 5 and 8 (and also the spatial phase 

portraits in Figs. 6 and 9) we can conclude: 

1) Region of one stable focus of the controlled MIMO3 system (9) is extended in 

relation to the same region of the uncontrolled MIMO3 system (7). Namely, this 

region includes both the region of one stable focus l3  [0.22, 0.07] given in 

Fig.5, and the region of two stable focuses l3  (0.07, 0.137] given in the same 

figure. 

2) Region of two spatial limit sets of the uncontrolled MIMO3 system for 

l3  (0.18, 0.57) has become the region of two stable focuses in the case of the 

controlled MIMO3 system. 

3) Region of chaos and unstable region given in the bifurcation diagram, Fig.5, 

after using the modified Pyragas method of control, have become the region of 

two spatial limit sets, l3  (0.615, 0.91] . 
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Fig. 8 Bifurcation diagram of controlled MIMO3 system, (9) 

Spatial phase portraits of the controlled MIMO3 system, (9), are presented in Fig.9. 

Comparing the spatial phase portraits given in Fig. 9 with spatial phase portraits given on 

Fig. 6, we are coming to the same conclusions as well as by comparing the bifurcation 

diagrams given in Figs. 5 and 8. These conclusions are summarized in Table1. 

 

 

Table1 Dynamics comparison of uncontrolled and controlled MIMO3 systems  

using Figs. 6 and 9 

 

Parameter l3  Uncontrolled MIMO3 system Controlled MIMO3 system 

405.03 l  chaos chaos 

3.03 l  spatial limit set spatial limit set 

2.03 l  one stable focus one stable focus 

1.03 l  two stable focuses one stable focus 

3.03 l  two spatial limit sets two stable focuses 

62.03 l  chaos two spatial limit sets 

85.03 l  system is unstable two spatial limit sets 

91.03 l  system is unstable chaos 
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Fig. 9 Spatial phase portraits of controlled MIMO3 system, (9) 
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5. CONCLUSION 

The modified Pyragas method for multiple spatial limit sets and chaos control in 

MIMO cascade nonlinear systems is presented in this paper. Besides the application of 

spatial phase portraits for dynamics analysis of controlled and uncontrolled MIMO 

cascade nonlinear systems, [3], bifurcation diagrams are used in this paper. In the case of 

monitoring the dynamics of an uncontrolled MIMO system with a large number of 

cascades (k + 1), using bifurcation diagram, is based on monitoring all outputs of the last 

cascade 
( 1)( 1) ( 1)
1[ , , ]

kk k
nx x

 x  as a function of the variable parameter ln. Bifurcation 

diagram of a controlled MIMO system is based on monitoring all outputs of the last 

cascade 
( 1)( 1) ( 1)
1[ , , ]

kk k
ny y

 y  as a function of the variable parameter ln. These diagrams 

show the dynamics of both systems completely. This is confirmed by comparing the 

segments of bifurcation diagrams with the spatial phase portraits. By comparing the 

bifurcation diagram of a controlled MIMO3 system with the bifurcation diagram of an 

uncontrolled MIMO3 system, we can conclude that the stability region of the controlled 

system is expanded thanks to the application of the modified Pyragas method. The 

controlled system is also moved from the region of multiple spatial limit sets into a region 

of two stable focuses, and from the region of chaos in a region of two spatial limit sets. 

APPENDIX: MATLAB M-FILES 

%Matlab M-file for deriving Fig.5: Bifurcation diagram of uncontrolled MIMO3 system, (7) 

x1=zeros(1061,5001); 

x2=zeros(1061,5001); 

x3=zeros(1061,5001); 

l1=zeros(1061,5001); 

l3=[-0.43:0.001:0.63]'; 

l2=0.5; 

for j=1:1061, 

x1(:,1)=0; 

x2(:,1)=0; 

x3(:,1)=0.17; 

l1(:,1)=-x1(:,1).^2+25/16; 

end; 

for j=1:1061, 

    for i=2:5001, 

    x1(j,i)=x2(j,i-1); 

    x2(j,i)=x3(j,i-1); 

    x3(j,i)=-(-x1(j,i-1).^2+25/16).*x3(j,i-1)-l2.*x2(j,i-1)-l3(j)*x1(j,i-1); 

    l1(j,i)=-x1(j,i-1).^2+25/16; 

    end; 

    hold on 

    plot(l3(j),x1(j,5001),'k',l3(j),x2(j,5001),'k',l3(j),x3(j,5001),'k') 

    xlabel('l3') 

    ylabel('x1(5000),x2(500),x3(500)') 

    hold off 

end; 

%Matlab M-file for deriving Fig.8: Bifurcation diagram of controlled MIMO3 system, (9) 

y1=zeros(1321,5001); 
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y2=zeros(1321,5001); 

y3=zeros(1321,5001); 

l1=zeros(1321,5001); 

l3=[-0.41:0.001:0.91]'; 

l2=0.5; k=-0.1; 

for j=1:1321, 

y1(:,1)=0; 

y2(:,1)=0; 

y3(:,1)=0.17; 

l1(:,1)=-y1(:,1).^2+25/16; 

end; 

for j=1:1321, 

    for i=2:5001, 

    y1(j,i)=y2(j,i-1); 

    y2(j,i)=y3(j,i-1); 

    y3(j,i)=-(-y1(j,i-1).^2+25/16).*y3(j,i-1)-l2.*y2(j,i-1)-l3(j)*y1(j,i-1)-(y3(j,i-1)-y2(j,i-1))*k; 

    l1(j,i)=-y1(j,i-1).^2+25/16; 

    end; 

    hold on 

    plot(l3(j),y1(j,5001),'k',l3(j),y2(j,5001),'k',l3(j),y3(j,5001),'k') 

    xlabel('l3'),ylabel('y1(5000),y2(500),y3(500)’) 

    hold off 

end; 
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