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Abstract. The paper explores the Proportional-derivative controller for a double 

integrator plus dead time processes, which is a challenging control problem, that is 

designed based on the existing Proportional-integrative controller for integrator plus 

dead time processes. The PD controller is extended with an integral action and an ideal 

PID controller is received. The parameters of both controllers are received by using the 

pole placement technique, whereby the transcendent characteristics equation of the closed 

loop system is solved by using the Lambert W function. The paper also examines the 

influence of the desired poles of the system with a closed feedback as well as the influence 

of the disturbance and the change of the DIPTD processes parameters onto the received 

control system performances. The results received by simulation, and the quantitative 

indicators, show that the proposed control system has better performances in comparison 

to the control systems obtained by other methods in literature.  

Key words: PID controller, PD controller, double integrator plus dead time processes, pole 

placement, time delay, Lambert W function 

1. INTRODUCTION 

Proportional-integrative-derivative (PID) controllers and Proportional-integrative (PI) 

controllers are most often used in the industry. This kind of a controller encompasses 

around 90% of all control loops and it could be told that PID controllers represent the 

bread and butter of automatic control [1]. Since 1942, when the Ziegler-Nichols procedure 

of designing a PID controller has been first introduced [2] numerous different methods for 

designing them have been developed. A significant number of this kind of designing 

procedures has been published by O’Dwyer [3].  
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It is commonly known that the mathematical model of the system represents the 

idealization of the real process or the control system. The reality has shown that, for the 

purposes of designing a controller, it is enough that the considered process is identified by 

using the model of the lower-order system [4]. There are two groups of models of the 

lower-order system which could be used for describing the real process: self-regulating 

process models and non-self-regulating process models. The former include, inter alia: the 

first-order plus time delay (FOPTD) process model and the second-order plus time delay 

(SOPTD) process model. The latter encompass the open loop unstable process models, 

among which there is an integrator plus dead time (IPTD) process model and the double 

integrator plus dead time (DIPTD) process model.  

Apart from mathematical system models, the presence of time delays, or dead times, 

exists in a wide range of industrial systems, such as neural networks, biological systems, and 

chemical processes. The time delay in real processes and systems occurs as a consequence of 

the transmission of mass, energy or information, e.g. the central heating system of a building, 

the remote control of vehicles. In addition, the complex industrial systems often consist of 

multiple serially connected simple dynamic systems, which, as a result, produce the time 

delay due to the accumulation of time lags or the processing time [5]. Numerous processes in 

the industry, apart from the time delay, have the integrative influence too, which is why 

their dynamics could be described by using the IPTD process model. The most typical 

example is a storage tank with an outlet pump, the high-pressure steam flowing to a steam 

turbine generator in a power plant, the heating of well-insulated batch systems, and the 

batch preparation of solutions by addition of chemicals to solvent [6]. DIPTD process 

model can be used to describe, for example, the single axis spacecraft rotation, rotary 

crane motion, dynamic positioning systems of ships and other vessels [7]. 

The time delay can be the cause of poor performances and the control systems 

instability, which is why the analysis of stability is extremely important in [8], among the 

rest. For eliminating long dead time, compensators such as the Smith predictor [9] are 

used, whereby the control systems with the Smith predictor are sensitive to the system 

parameter changes, especially to the time delay. More optimal system performances with 

closed loop feedback, i.e. more robust control systems are received in literature by using 

the common modifications of the Smith predictor, inter alia, by using the modification 

given in [10]. For controlling the processes and systems with a low time delay, the PI 

controllers and PID controllers are used, for their use yields good performances of the 

closed loop system and simultaneously the control system is more robust to the changes of 

the process parameters in comparison to the control system with the Smith predictor. 

The presence of a time delay significantly complicates the procedure of designing the 

controller by using more traditional methods in the time and frequency domain. To avoid 

solving the transcendent characteristic closed loop system equation, when designing the 

controller, the time delay is most often approximated by using the Padé approximation or 

Taylor’s approximation.   

In this paper, a PD controller for the DIPTD systems is designed according to the 

existing Proportional-integral (PI) controller for IPTD processes [11]–[12]. It is well known 

that the application of the PD controller with DIPTD processes, in case of disturbance, 

yields the off-set of the output signal. The off-set of the output signal could be eliminated by 

using the controller with the integrative effect, i.e. by using the PID controller. 
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With the purpose of designing a PD controller for the DIPTD systems, as well as 

designing a PID controller, in this paper, the pole placement technique has been used. The 

proposed method enables the solution of the transcendent system equation, for the desired 

poles of the closed loop system, without the approximation of the time delay, by 

employing the features of the Lambert W function in the scalar and matrix form [13]–

[20]. The results have been obtained by using the LambertW_DDE_Toolbox [21]. 

The influence of the desired poles onto the robustness of the received control systems 

has been examined by comparing the obtained data for: Ms-sensitivity index, GM-gain 

margin, PM-phase margin. The influence of the DIPTD process parameters change onto 

the closed loop system response has been considered, too. The performances of the 

received control systems with the PD and PID controllers for different desired poles, in 

the transition period, have been compared by measuring the settling time of the obtained 

closed loop system output signal and the overshoot of the output signal expressed in 

percentages for the set-point response and in the deviation of the output signal from the 

reference signal for the disturbance response. In Matlab, the received results are 

compared with the results obtained by using other methods given in literature. 

This paper is organized in the following way. In Section 2, there is a short description 

of the Lambert W function. The development of the PD controller and simulation results 

are presented in Section 3, while in the next section, the PID controller is developed. The 

comparison of the received results is given in Section 5. The concluding remarks are 

given in Section 6. 

2. LAMBERT W FUNCTION 

The multivalued transcendental Lambert W function [13], labelled as W(z), where z 

belongs to the set of complex numbers C, is the solution of the equation 

 ( )( ) .W zW z e z  (1) 

This function has an infinite number of solutions, i.e. Wk(z) branches, where k denotes 

the ordinal number of the branch and the kϵ(-∞,∞). In case that the argument z belongs to 

the set of real numbers R, there are only two branches Wk(z) which can have a real value, 

and that is: principal branch W0(z) for k=0 and the branch W-1(z) for k=-1. This feature of 

the Lambert W function has a key role in solving the problems related to the controller 

design.  

The value graph of the Lambert W function, for the real value of the argument z, has 

been in Figure 1, wherefrom it can be observed that: 

a) if z=-e
-1

=-0.3679
 
both branches of the Lambert W function have identical values, 

i.e. W0(z)=-1 and W-1(z)=-1, 

b) for -e
-1

<z<0, there are two different solutions of the Lambert W function: the 

principal branch -1<W0(z)<0, while the solution of the branch for k=-1, W-1(z) is 

within the range (-∞,-1), (for example: if z=-0.2, then W0(z)=-0.2592 and W-1(z)=-

2.5426), 

c) if z=0, there is merely one solution W0(z)=0, 
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d) for z>0, the value which the principal branch assumes is W0(z)>0, while W-1(z) 

does not have a solution which belongs to the set of real numbers (for example: if 

z=1.5, then W0(z)=0.7259 and W-1(z)=-1.1217-4.4663j). 

 

Fig. 1 Two main branches of the Lambert W function for zϵR 

The principal branch W0(z) is analytic at the point of zero, which ensues from the 

Lagrange’s inversion theorem which, in turn, provides the series expansion with the 

radius of convergence e
-1
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A more detailed explanation related to the range of branches, the manner of solution 

of (1), etc. could be found, except for [13] in other papers published by the same author 

or other authors. 

3. TUNING PD CONTROLLER FOR DIPTD PROCESSES 

Fig. 2 shows a conventional one-degree-of-freedom (1-DOF) PD control system, 

where: C(s)- the transfer function of the PD controller, G(s)- the transfer function of the 

DIPTD process, r- the set-point, d- the disturbance signal, y- the controlled output, u- the 

control signal, e- the control error and e=ry. 

Let the transfer function of controlled DIPTD processes, where: K-the controlled 

DIPTD plant gain and θ-the dead time, be 

 
2

( ) .sK
G s e

s

  (3) 

 

Fig. 2 Conventional 1-DOF controller control system 
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The transfer function of the ideal PD controller, where: Kp– proportional gain, and Kd– 

differential gain, is 

 ( ) .p dC s K K s   (4) 

The transfer function of the real PD controller [22] is 

 ( ) ( ),p d sC s K K D s   (5) 

 where Ds(s)- the approximate derivative term, has the value  

 ( ) , , 1.
1

1

d
s f

df

Ks s
D s T N

K sT s N

N

   




 (6) 

 The controlled output from Fig. 2 is 

 ( ) ( ) ( ) ( ) ( ),s dY s H s R s H s D s   (7) 

where: Hs(s)  the set-point transfer function and Hd(s)  the load disturbance transfer 

function are in the form 

 
( ) ( )

( ) ,
1 ( ) ( )

s

C s G s
H s

C s G s



 (8) 

 
( )

( ) .
1 ( ) ( )

d

G s
H s

C s G s



 (9) 

By replacing (3) and (4) into (8) and (9) the set-point transfer function and the load 

disturbance transfer function are received 
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 (10) 
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 (11) 

From (10) the transcendent characteristic equation of the control system with an 

infinite number of solutions is obtained 

 
2( ) ( ) 0.s

d ps s K K s K e       (12) 

The characteristic equation (12) can be written down in its matrix form 

 0,kS

k dS A A e


    (13) 

where A and Ad are the constant matrices assuming the dimensions 2x2,  Sk is the complex 

solution matrix (13) of the same dimensions, k is the ordinal number of the branch of the 

Lambert W function, [11]-[12], [15]-[16] and 
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0 00 1

, .
0 0

d

p d

A A
KK KK

  
         

 (14) 

If the desired poles of the system with the closed loop feedback are λ1 and λ2, then the 

solution matrix Sk could be given in the form  

 
1 2 1 2

0 1
.kS

   

 
  

  
 (15) 

By using the limitations given by Gomez and Michiels [14], the characteristic system 

equation (13), can be written down in the following form  

 
( )

( ) ,kS A

k d kS A e A Q
 

   (16) 

where Qk is the unknown matrix of the dimensions 2x2, which needs to satisfy the 

equation 

 
( )

( ) .k d kW A Q A

k d k dW A Q e A
  

  (17) 

By applying the matrix Lambert W function onto (16), the solution of the characteristic 

system equation of the control system (13) is obtained, in the form 

 
1

( ) .k k d kS W A Q A


   (18) 

By solving (17) and (18) simultaneously for the desired poles λ1 and λ2 of the closed 

loop system, the unknown matrix Qk and the parametric PD controller are received. 

At 1-DOF controller, it is not possible to simultaneously realize the optimal set-point 

tracking and the disturbance response. For this reason, the tuning parameters are usually 

given separately; one half of the parameters serve the set-point tracking, while the other 

half is used for the purposes of disturbance rejection.  

The gain parameters of the PD controller could be received, alongside the already-

mentioned way, based on the received gain of the PI controller for the IPTD processes 

[11]-[12]. In order to make an analogy between 1-DOF PD controller system for DIPTD 

processes and 1-DOF PI controller system for IPTD processes, let us assume that the 

control system shown in Fig. 2 stands for 1-DOF PI control system for IPTD processes, 

where: G(s) is the transfer function of the IPTD processes with the same gain and time 

delay as DIPTD processes and C(s)  the transfer function of the PI controller where 

Kpi  proportional gain and Ki  integrative gain 

 ( ) ( ) ,s

IPDT

K
G s G s e

s

   (19) 

 ( ) ( ) .i
PI pi

K
C s C s K

s
    (20) 

By replacing (19) and (20) in (8) and (9) the set-point transfer function Hspi(s) and the 

load disturbance transfer function Hdpi(s) is received, in the function of the parameters 

IPTD processes and the parameters of the PI controller 



 Tuning PD and PID Controllers via the Lambert W Function for Double Integrator Plus Dead Time Processes 7 

 
2

( )
( ) ,

( )

s

pi i

spi s

pi i

K K s K e
H s

s K K s K e












 
 (21) 

 
2

( ) .
( )

s

dpi s

pi i

Kse
H s

s K K s K e










 
 (22) 

By comparing (10) and (21) it can be inferred that the two control systems have the 

identical set-point transfer functions, if and only if the proportional gain of the PD 

controller equal to the integrative gain of the PI controller and the differential gain of the 

PD controller equal to the proportional gain of the PI controller 

 , .p i d piK K K K   (23) 

In that case, the characteristic equations of both systems are identical, which means 

that the received parameters of the PI controller for IPTD processes from [11] and [12] 

could be applied under the condition (23) for obtaining the PD controller for DIPTD 

processes which has the equal gain and time delay to the one at IPTD process.  

The generic form for finding the parameters of the PD controller functioning as 

desired poles [11] is  

 1 2 2 12 21 2
1 2 2 1

1 2 1 2

1
( ), ( ).

( ) ( )
p dK e e K e e

K K

    
   

   
   

 
 (24) 

For the desired, so called, aggressive tuning [12], with the poles of the closed loop 

systems selected by using  

 1/2

0.5 0.5
.j


 

 
 (25) 

The parameters of the PD controller are obtained by using the simple formula 

 
2

0.12075 0.53228
, .p dK K

KK
 


 (26) 

By reducing the imaginary part of the desired pole, whereby the real part retains the value 

given in (25), and by finding the parameters of the PD controller from (24), a more robust 

control system is received.  

On the other hand, the steady state error for set-point tracking at the  PI controller 

control system for IPTD processes is equal to zero and in case that the system is being 

influenced by the disturbance, which is not the case at the use of PD controller for DIPTD 

processes. The steady-state response of PD controller controlled system Yss to the step 

change with amplitude Ar of the set-point variable and to the step change with amplitude 

Ad of the disturbance signal is 

 
0

1
lim( ( )) lim( ( )) .ss r d
t s

p

Y y t sY s A A
K 

     (27) 

If the disturbance affects the control system, from (27) it could be deduced that, if 

Ad=0 the steady-state error for set-point tracking does not exist, and if Ad≠0 the steady-
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state error and its value are directly proportional to the amplitude of the disturbance and 

indirectly proportional to the PD controller gain. For eliminating the steady-state error for 

set-point tracking it is necessary to add the integrative effect of the controller.  

Case Study 1  

DIPTD process is described in transfer function 

 0.5

2

1
( ) .sG s e

s

   

Two different PD controller design processes were used for the considered DIPTD 

process. The first PD controller (PD1 controller) is designed by means of a direct method 

for the desired poles of the closed loop system by using (17) and (18) or with the usage of 

(24). The second PD controller (PD2 controller) is received by the usage of parameters of 

the existing PI controller which was designed for the IPTD process with the same gain 

and time delay as the considered DIPTD process by using (23). In order to show the 

influence of the desired closed loop system poles on the system performance, PD1 controller 

and PD2 controller were designed for different desired poles. 

Assuming that the desired poles of the closed loop system are λ1/2=-1±0.4j. By solving 

(17) and (18) or out of (24) the PD1 controller with parameters Kp=0.3401 and Kd=0.9358 

is received. 

 1( ) 0.3401 0.9358PD s s    

For IPTD processes with K=1, θ=0.5, in [12], by using the proposed method of the 

aggressive tuning, for the desired poles λ1/2=-1±j (25), the PI controller (20) with 

parameters Kpi=1.0646 and Ki=0.4830 is developed. By applying (23), for the considered 

DIPTD process, the PD2 controller with parameters Kp=0.4830 and Kd=1.0646 is received  

 2 ( ) 0.4830 1.0646PD s s    

Quantitative indicators of the performances of the obtained control systems in the 

transition period Ts- settling time, Tr- rise time and OS- maximum percentage overshoot 

and the indicators of the robustness GM- the gain margin, PM- the phase margin and Ms- 

the sensitivity index, are displayed in Table 1. 

Table 1 Values Ts, Tr, OS, GM, PM and Ms for different PD controllers  

 Ts (s) Tr (s) OS (%) GM (dB) PM (degrees) Ms 

PD1 6.87 0.792 36.6 9.7279 41.4187 1.7293 

PD2 5.00 0.662 47.0 8.3562 35.5816 1.9667 

The unit step response of the DIPTD system is shown in Fig. 3, where the indented 

blue line denotes the response received with the PD1 controller, and the solid black line 

denotes the response with the PD2 controller.  
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Fig. 3 Set-point response  

The response of the control system under the influence of step disturbance of the unit 

amplitude with the reference signal equal to zero is presented in Fig. 4.  

 

Fig. 4 Disturbance response with zero reference input 

As it has already been mentioned, and which can be seen in Fig. 4, in case of the 

disturbance effect, there is an off-set of the output signal which can be eliminated by 

adding the integral effect of the controller. Based on the insight from Table 1, and on the 

observation of the responses given in Fig. 3 and Fig. 4, it can be inferred that the received 

PD2 controller by using the aggressive tuning enables faster set-point responses and faster 

disturbance compensation, but also the larger overshoot.  

The influence of the unknown changes onto the control system, presented in the form 

of the change of both parameters of DIPTD processes for 30%, and onto the set-point and 

disturbance response is shown in Fig. 5. 
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Fig. 5 Set-point and Disturbance response under perturbation in DIPTD process parameters 

of 30% 

The response from Fig. 5 and the data summed up in Table 1 clearly indicate that both 

control system, DIPTD process with PD1 controller and DIPTD process with PD2 

controller, meet the conditions of the robustness as well as that by using the PD2 

controller a better system robustness is achieved.  

4. TUNING PID CONTROLLER FOR DIPTD PROCESSES 

Let us assume that the control system shown in Fig. 2 represents 1-DOF PID control 

system for DIPTD processes. The transfer function of the ideal PID controller, where Kpid, 

Kipid and Kdpid are gains of the proportional, integrative, and differential part of the 

controller, respectively, is  

 ( ) ( ) .
ipid

PID pid dpid

K
C s C s K K s

s
     (28) 

By replacing (3) and (28) into (8) and (9) the set-point transfer function Hspid(s) and the 

load disturbance transfer function Hdpid(s) are received, in the function of the parameters 

of DIPTD processes and the PID controller parameters 

 

2

3 2

( )
( ) ,

( )

s

dpid ppid ipid

spid s

dpid ppid ipid

K K s K s K e
H s

s K K s K s K e









 


  
 (29) 

 
3 2

( ) .
( )

s

dpid s

dpid ppid ipid

Kse
H s

s K K s K s K e










  
 (30) 

By replacing (29) and (30) in the controlled output equation (7) and by applying the 

final value theorem (27), the steady state error equal to zero is received. 
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The characteristic equation of the received control system with the PID controller   

 3 2( ) ( ) 0,s

pid dpid ppid ipids s K K s K s K e        (31) 

Equation (31) can be expressed in the matrix shape of Equation (13), where Sk is the 

complex matrix solution of the dimensions 3x3 and 

 

0 1 0 0 0 0

0 0 1 , 0 0 0 .

0 0 0

d

ipid ppid dpid

A A

KK KK KK

  
  

    
        

 (32) 

By solving (17) and (18) simultaneously for the desired poles of the closed loop 

system λ1, λ2 and λ3, the PID controller parameters and the unknown matrix Qk of the 

dimensions 3x3, are received.  

Another way of receiving the PID controller parameters (28) is using the results 

obtained for the PD controller. By replacing the PD controller Kp and Kd, received in the 

way explained in the previous section, in the following manner 

 , ,ppid p dpid d ipid dK K K K K K    (33) 

where: α- tuning parameter, α- real number slightly greater than zero, in (32) the 

following is received  

 

0 1 0 0 0 0

0 0 1 , 0 0 0 .

0 0 0

d

d p d

A A

K K KK KK

  
  

    
        

 (34) 

For different values α, the received response of the closed loop system is observed and the 

value which satisfies the desired system performances is selected. The check of the 

stability of the closed loop system for different values α is determined by checking the 

obtained closed loop poles using (18), based on which the kind of given specifications of 

the closed loop system, such as for example the settling time, could be pointed out.   

Case Study 2 

The proposed method of receiving the PID controller applied to the DIPTD process 

given in Case Study 1 for both PD controllers. 

By replacing the parameters of the PD1 controller in the formula (33) the following is 

received 

 0.3401, 0.9358, 0.9358 .ppid p dpid d ipid dK K K K K K         

In Table 2, GM, PM, Ms, OS, settling time Ts for the set-point response and the settling 

time Tsd for the disturbance response are given, for the PID controllers (PID1 controllers) 

with different integrative gains received for different values of the tuning parameters α 

based on the PD1 controller.  
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Table 2 Values of GM, PM, Ms, OS, Ts and Tsd for the PID1 controller received based on 

the PD1 controller from Case Study 1 in the function of the tuning parameter α 

α Ts (s) Tsd (s) OS (%) GM (dB) PM (degrees) Ms 

0.05 16.2 19.8 42.0 9.7764 40.7178 1.7179 

0.06 16.3 21.7 43.1 9.7864 40.5254 1.7178 

0.07 16.1 21.7 44.4 9.7958 40.3099 1.7159 

0.08 15.7 20.5 45.6 9.8051 40.0682 1.7140 

0.09 15.3 25.2 46.8 9.8124 39.7963 1.7120 

 

For the same values of the tuning parameter α, Table 3 sums up the results in case that 

the PID controller (PID2 controller) is designed based on the PD2 controller, i.e. 

 0.4830, 1.0646, 1.0646 .ppid p dpid d ipid dK K K K K K        

Table 3 Values of GM, PM, Ms, OS, Ts and Tsd for the PID2 controller received based on 

the PD2 controller from Case Study 1 in the function of the tuning parameter α 

α Ts (s) Tsd (s) OS (%) GM (dB) PM (degrees) Ms 

0.05 9.97 30.4 51.1 8.4056 35.1241 1.9564 

0.06 12.0 23.9 52.0 8.4149 35.0067 1.9544 

0.07 12.8 19.0 52.8 8.4242 34.8788 1.9523 

0.08 13.0 15.1 53.7 8.4332 34.7395 1.9503 

0.09 13.0 12.5 54.6 8.4373 34.5876 1.9485 

The response of the DIPTD process with parameters gain K=1 and dead time θ=0.5s, 

with different PID controllers under the influence of the disturbance in the form of the 

unit step function which occurs in the moment t=25s and the reference unit step function 

signal, is shown in Fig. 6.  

 

Fig. 6 Set-point and Disturbance response under perfect parameters of DIPTD process 
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The response under the influence of the same disturbance and perturbation of 30% in 

the gain and in the time delay of the DIPTD process, is shown in Fig. 7. 

 

Fig. 7 Set-point and Disturbance response under perturbation of 30% in DIPTD process 

parameters 

According to the data from Table 2 and Table 3, it can be inferred that PID1 controllers 

received based on the parameters of the PD1 controller enable better robustness of the control 

system compared to the PID2 controllers based on the PD2 controllers. On the other hand, by 

using the PID2 controllers the shorter settling time of the closed loop feedback system is 

obtained, as well as the faster disturbance compensation. The same conclusions could be made 

based on the observations from Fig. 6 and Fig. 7.  

5. SIMULATION RESULTS 

Case Study 3 

The second order plus time delay (SOPTD) process model is examined, of the transfer 

function 

 
2

40
( ) .

(20 1)

sG s e
s




  

For the examined SOPTD process model Ruscio and Dalen [7] designed the ideal PID 

controller which is used for receiving Ms=1.59, with parameters Kc=1.08, Ti=7.65 and 

Td=3.67, of the transfer function  

1
( ) (1 ).c c d

i

G s K T s
T s

  

 

The examined SOPTD process model has the time constant much greater than the time 

delay, which is why the same could be approximated by using the DIPTD process model 

(3) with parameters: gain K=0.1 and time delay θ=1.  

First, by using the proposed method the PD controller is designed based on the 

approximated DIPTS process model. The desired poles are selected as in (25). By using 

the simple formula for calculating the parameters of the PD controller (26), Kp=1.2075 and 
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Kd=5.3228 are obtained. After replacing the received gains in (33), for the different values of 

the tuning parameters αϵ(0.01-0.03), with the step change of the 0.001 parameter, the PID 

controller parameters and the closed loop system response are received. 

The compromise between the quicker set-point response of the closed loop system and 

the good robustness in terms of the faster compensation of the disturbance influence onto 

the system, as well as the influence of the unknown changes, is obtained for α=0.019. By 

replacing the selected value of the tuning parameter α in (33) the integrative gain of the 

PID controller Ki=0.1011 is received. 

The spectrum of the poles of the closed loop system, with the proposed PID controller 

and the SOPTD process model, is shown in Fig. 8, wherefrom it can be observed that the 

received control system is stable. 

 

Fig. 8 Closed loop spectrum distribution  

The present PID controller and the PID controller received by using Dalen and Ruscio 

method from [7] have been employed for controlling the examined SOPTD process model.  

The set-point response for the unit step reference input without disturbance is shown in Fig. 

9, where the response received by using the present-PID controller is labelled with YPresent while 

the response received by using the PID controller method from [7] is marked with YRD.  

 

Fig. 9 Set-point response under perfect parameters of SOPTD process 
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The response of the SOPTD process during the disturbance influence in the form of the 

unit step function, wherein the reference signal is equal to zero, with the present-PID 

controller and the Ruscio and Dalen-PID controller given in [7], is illustrated in Fig. 10.  

 

Fig. 10 Disturbance response under perfect parameters of SOPTD process  

The same parameter values as in the previous section, GM, PM, Ms, OS, settling time 

Ts for the set-point response and the settling time Tsd for the disturbance response, have 

been used as quantitative indicators of the received results, while the results have been 

summed up in Table 4.  

Table 4 Values of GM, PM, Ms, OS, Ts and Tsd for the PID control system for SOPTD 

process model in Case Study 3 

 Ts (s) Tsd (s) OS (%) GM (dB) PM (degrees) Ms 

Ruscio and Dalen-PID 26.9 39.8 41.2 11.274 40.1626 1.5888 

Present-PID 16.0 32.4 30.7 8.8961 45.4147 1.7677 

Both PID controllers satisfy the criteria of robustness. The received results indicate 

that the present PID controller compensates the disturbance better and that it gives better 

characteristics in the transition period, not only in terms of the settling time, but also in 

the size of the received overshoot.  

The influence of the unknown changes onto the control system has been explored 

through the influence of the change of +50% of all the parameters of the considered 

SOPTD process model (perfect parameters: process gain K=40, process time constant 

T=20 and process time delay θ=1) onto the closed loop system response. 

 Closed loop unit step response under perturbation of +50% in SOPTD process 

parameters is shown in Fig. 11, while the mentioned influence of the change onto the 

disturbance response given in Fig. 12. 

On Fig. 11 and 12, it can be noticed that these changes at both control systems with 

PID controllers lead to the longer settling period and the greater overshoot, but it can also 

be observed that the system with the proposed PID controller indicates a lower 

oscillation. From this, it can be inferred that using the proposed PID controller, even in 

case of the unknown changes which affect the system, better performances are received. 
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Fig. 11 Set-point response under perturbation of +50% in SOPTD process parameters 

 

Fig. 12 Disturbance response under perturbation of +50% in SOPTD process parameters 

6. CONCLUSION 

The paper represents two ways of designing PD and PID controller for a double 

integrator with dead time processes or systems. The first way is the well-known pole 

placement technique of designing the controller whereby the Lambert W function for solving 

the transcendent characteristic equation was applied. The other method enables the synthesis 

of the PD controller by using the already-received gains of the PI controller for the integrator 

plus dead time processes. The gains of the PD controllers within the latter proposed way of 

designing a PID controller are the gains of the proportional and differential part of the 

controller, and the integral gain is selected based on the performances for different values of 

the tuning parameter. The stability is examined by checking the pole locations of the closed 

loop system whereby the calculation is applied to the Lambert W function.  

The paper has provided a simple formula for calculating the gain of the PD controller 

which could be applied in the teaching practice. By using the proposed method, the PID 

controller which enables a much faster response, and better disturbance compensation as 

well as better performances under the influence of the unknown changes in comparison 

with other methods compared is obtained.  
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